Acknowledgement
Supported by : National Natural Science Foundation of China, China Postdoctoral Science Foundation, China Agriculture Research System
References
- Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001;157:1819-29.
- VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008;91:4414-23. https://doi.org/10.3168/jds.2007-0980
- Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics 2011;12:186. https://doi.org/10.1186/1471-2105-12-186
- Yang W, Tempelman RJ. A Bayesian antedependence model for whole genome prediction. Genetics 2012;190:1491-501. https://doi.org/10.1534/genetics.111.131540
- Zhu B, Zhu M, Jiang J, et al. The impact of variable degrees of freedom and scale parameters in Bayesian methods for genomic prediction in Chinese Simmental beef cattle. PLoS One 2016;11: e0154118. https://doi.org/10.1371/journal.pone.0154118
- Jiang J, Zhang Q, Ma L, et al. Joint prediction of multiple quantitative traits using a Bayesian multivariate antedependence model. Heredity (Edinb) 2015;115:29-36. https://doi.org/10.1038/hdy.2015.9
- Yang W, Chen C, Tempelman RJ. Improving the computational efficiency of fully Bayes inference and assessing the effect of misspecification of hyperparameters in whole-genome prediction models. Genet Sel Evol 2015;47:13. https://doi.org/10.1186/s12711-015-0092-x
- Yi N, Xu S. Bayesian LASSO for quantitative trait loci mapping. Genetics 2008;179:1045-55. https://doi.org/10.1534/genetics.107.085589
- Gelman A. Prior distributions fro variance parameters in hierachical models. Bayesian Anal 2006;1:515-34. https://doi.org/10.1214/06-BA117A
- Gao N, Martini JWR, Zhang Z, et al. Incorporating gene annotation into genomic prediction of complex phenotypes. Genetics 2017;207:489-501.
- Elsen J-M, Tesseydre S, Filangi O, Le Roy P, Demeure O. XVth QTLMAS: simulated dataset. BMC Proc 2012;6(Suppl 2):S1.
- Valdar W, Solberg LC, Gauguier D, et al. Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 2006;38:879-87. https://doi.org/10.1038/ng1840
- Legarra A, Robert-Granié C, Manfredi E, Elsen JM. Performance of genomic selection in mice. Genetics 2008;180:611-8. https://doi.org/10.1534/genetics.108.088575
- Valdar W, Solberg LC, Gauguier D, et al. Genetic and environmental effects on complex traits in mice. Genetics 2006;174:959-84. https://doi.org/10.1534/genetics.106.060004
- Gianola D, De Los Campos G, Hill WG, Manfredi E, Fernando R. Additive genetic variability and the Bayesian alphabet. Genetics 2009;183:347-63. https://doi.org/10.1534/genetics.109.103952
- Wang L, Edwards D, Janss L. Evaluation of antedependence model performance and genomic prediction for growth in Danish pigs. 10th World Congress on Genetics Applied to Livestock Production (WCGALP), Vancouver, Canada; 2014. p. 1-3.
- Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA. The impact of genetic architecture on genome-wide evaluation methods. Genetics 2010;185:1021-31. https://doi.org/10.1534/genetics.110.116855
- Li X, Lund MS, Janss L, et al. The patterns of genomic variances and covariances across genome for milk production traits between Chinese and Nordic Holstein populations. BMC Genet 2017;18:26.
- Ding X, Zhang Z, Li X, et al. Accuracy of genomic prediction for milk production traits in the Chinese Holstein population using a reference population consisting of cows. J Dairy Sci 2013;96:5315-23. https://doi.org/10.3168/jds.2012-6194
Cited by
- Genomic Prediction Using Bayesian Regression Models With Global-Local Prior vol.12, pp.None, 2018, https://doi.org/10.3389/fgene.2021.628205