Fig. 1. The gut-brain axis. Five possible bidirectional communication routes between gut and brain, routes for dietary polyphenols and their metabolites, and the modulation of gut-brain axis by dietary polyphenols are illustrated. Adapted from [25, 59, 71, 85].
References
- Agostinho, P., Cunha, R. A. and Oliveira, C. 2010. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease. Curr. Pharm. Des. 16, 2766-2778. https://doi.org/10.2174/138161210793176572
- Arts, I. C. W. and Hollman, P. C. H. 2005. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 81, 317-325. https://doi.org/10.1093/ajcn/81.1.317S
- Aura, A. M., Martin-Lopez, P., O'Leary, K. A., Williamson, G., Oksman-Caldentey, K. M., Poutanen, K. and Santos-Buelga, C. 2005. In vitro metabolism of anthocyanins by human gut microflora. Eur. J. Nutr. 44, 133-142. https://doi.org/10.1007/s00394-004-0502-2
- Aura, A. M. 2008. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev. 7, 407-429. https://doi.org/10.1007/s11101-008-9095-3
- Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. and Gordon, J. I. 2005. Host-bacterial mutualism in the human intestine. Science 307, 1915-1920. https://doi.org/10.1126/science.1104816
- Biasi, F., Astegiano, M., Maina, M., Leonarduzzi, G. and Poli, G. 2011. Polyphenol supplementation as a complementary medicinal approach to treating inflammatory bowel disease. Curr. Med. Chem. 18, 4851-4865. https://doi.org/10.2174/092986711797535263
- Bowey, E., Adlercreutz, H. and Rowland, I. 2003. Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem. Toxicol. 41, 631-636. https://doi.org/10.1016/S0278-6915(02)00324-1
- Breteler, M. M. 2000. Vascular risk factors for Alzheimer's disease: an epidemiologic perspective. Neurobiol. Aging 21, 153-160.
- Brickman, A. M., Khan, U. A., Provenzano, F. A., Yeung, L. K., Suzuki, W., Schroeter, H., Wall, M., Sloan, R. P. and Small, S. A. 2014. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat. Neurosci. 17, 1798-1803. https://doi.org/10.1038/nn.3850
- Brown, W. R. and Thore, C. R. 2011. Cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol. Appl. Neurobiol. 37, 56-74. https://doi.org/10.1111/j.1365-2990.2010.01139.x
- Calani, L., Dall'Asta, M., Derlindati, E., Scazzina, F., Bruni, R. and Del Rio, D. 2012. Colonic metabolism of polyphenols from coffee, green tea, and hazelnut skins. J. Clin. Gastroenterol. 46, S95-S99. https://doi.org/10.1097/MCG.0b013e318264e82b
- Calder, P. C., Albers, R., Antoine, J. M., Blum, S., Bourdet-Sicard, R., Ferns, G. A., Folkerts, G., Friedmann, P. S., Frost, G. S., Guarner, F., Lovik, M., Macfarlane, S., Meyer, P. D., M'Rabet, L., Serafini, M., van Eden, W., van Loo, J., Vas Dias, W., Vidry, S., Winklhofer-Roob, B. M. and Zhao, J. 2009. Inflammatory disease processes and interactions with nutrition. Br. J. Nutr. 101, S1-45. https://doi.org/10.1017/S0007114509990511
- Casini, M. L., Marelli, G., Papaleo, E., Ferrari, A., D'Ambrosio, F. and Unfer, V. 2006. Psychological assessment of the effects of treatment with phytoestrogens on postmenopausal women: a randomized, double-blind, crossover, placebo-controlled study. Fert. Steril. 85, 972-978. https://doi.org/10.1016/j.fertnstert.2005.09.048
- Cryan, J. F. and Dinan, T. G. 2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701-712. https://doi.org/10.1038/nrn3346
- Dantzer, R. 2009. Cytokine, sickness behavior, and depression. Immunol. Allergy Clin. North Am. 29, 247-264. https://doi.org/10.1016/j.iac.2009.02.002
- DeGruttola, A. K., Low, D., Mizoguchi, A. and Mizoguchi, E. 2016. Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis. 22, 1137-1150. https://doi.org/10.1097/MIB.0000000000000750
- Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G. and Crozier, A. 2013. Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 18, 1818-1892. https://doi.org/10.1089/ars.2012.4581
- Dias, G. P., Cavegn, N., Nix, A., do Nascimento Bevilaqua, M. C., Stangl, D., Zainuddin, M. S., Nardi, A. E., Gardino, P. F. and Thuret, S. 2012. The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety. Oxid. Med. Cell Longev. 2012, 541971.
-
di Gesso, J. L., Kerr, J. S., Zhang, Q., Raheem, S., Yalamanchili, S. K., O'Hagan, D., Kay, C. D. and O'Connell, M. A. 2015. Flavonoid metabolites reduce tumor necrosis factor-
${\alpha}$ secretion to a greater extent than their precursor compounds in human THP-1 monocytes. Mol. Nutr. Food Res. 59, 1143-1154. https://doi.org/10.1002/mnfr.201400799 - Dinan, T. G., Stanton, C. and Cryan, J. F. 2013. Psychobiotics: a novel class of psychotropic. Biol. Psychiatry 74, 720-726. https://doi.org/10.1016/j.biopsych.2013.05.001
- Duenas, M., Munoz-Gonzalez, I., Cueva, C., Jimenez-Giron, A., Sanchez-Patan, F., Santos-Buelga, C., Moreno-Arribas, M. V. and Bartolome, B. 2015. A survey of modulation of gut microbiota by dietary polyphenols. Biomed. Res. Int. 2015, 850902.
- Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. and Relman, D. A. 2005. Diversity of the human intestinal microbial flora. Science 308, 1635-1638. https://doi.org/10.1126/science.1110591
- FAO/WHO. 2002. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. April 30-May 1. Ontario, Canada.
- Farzaei, M. H., Rahimi, R. and Abdollahi, M. 2015. The role of dietary polyphenols in the management of inflammatory bowel disease. Curr. Pharm. Biotechnol. 16, 196-210. https://doi.org/10.2174/1389201016666150118131704
- Filosa, S., Di Meo, F. and Crispi, S. 2018. Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regen. Res. 13, 2055-2059. https://doi.org/10.4103/1673-5374.241429
- Flanagan, E., Muller, M., Hornberger, M. and Vauzour, D. 2018. Impact of flavonoids on cellular and molecular mechanisms underlying age-related cognitive decline and neurodegeneration. Curr. Nutr. Rep. 7, 49-57. https://doi.org/10.1007/s13668-018-0226-1
- Fraga, C. G., Galleano, M., Verstraeten, S. V. and Oteiza, P. I. 2010. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med. 31, 435-445. https://doi.org/10.1016/j.mam.2010.09.006
- Frank, D. N. and Pace, N. R. 2008. Gastrointestinal microbiology enters the metagenomics era. Curr. Opin. Gastroenterol. 24, 4-10. https://doi.org/10.1097/MOG.0b013e3282f2b0e8
- Frank-Cannon, T. C., Alto, L. T., McAlpine, F. E. and Tansey, M. G. 2009. Does neuroinflammation fan the flame in neurodegenerative diseases. Mol. Neurodegener. 4, 47. https://doi.org/10.1186/1750-1326-4-47
- Garcia-Lafuente, A., Guillamon, E., Villares, A., Rostagno, M. A. and Martinez, J. A. 2009. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res. 58, 537-552. https://doi.org/10.1007/s00011-009-0037-3
- Ghanim, H., Sia, C. L., Abuaysheh, S., Korzeniewski, K., Patnaik, P., Marumganti, A., Chaudhuri, A. and Dandona, P. 2010. An antiinflammatory and reactive oxygen species suppressive effects of an extract of polygonum cuspidatum containing resveratrol. J. Clin. Endocrinol. Metab. 95, E1-8.
- Graf, B. A., Milbury, P. E. and Blumberg, J. B. 2005. Flavonols, flavonones, flavanones and human health: epidemological evidence. J. Med. Food 8, 281-290. https://doi.org/10.1089/jmf.2005.8.281
- Harris, K., Kassis, A., Major, G. and Chou, C. J. 2012. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J. Obes. 2012, 879151.
- Hattori, M. and Taylor, T. D. 2009. The human intestinal microbiome: a new frontier of human biology. DNA Res. 16, 1-12. https://doi.org/10.1093/dnares/dsn033
- Impey, S., Smith, D. M., Obrietan, K., Donahue, R., Wade, C. and Storm, D. R. 1998. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1, 595-601. https://doi.org/10.1038/2830
- Jankord, R. and Herman, J. P. 2008. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann. N. Y. Acad. Sci. 1148, 64-73. https://doi.org/10.1196/annals.1410.012
- Kennedy, D. O. 2014. Polyphenols and the human Brain: plant "secondary metabolite" ecologic roles and endogenous signaling functions drive benefits. Adv. Nutr. 5, 515-533. https://doi.org/10.3945/an.114.006320
- Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., Rush, A. J., Walters, E. E. and Wang, P. S. 2003. The epidemiology of major depressive disorder: results from the national comorbidity survey replication (ncs-r). Jama 289, 3095-3105. https://doi.org/10.1001/jama.289.23.3095
- Khurana, S., Venkataraman, K., Hollingsworth, A., Piche, M. and Tai, T. C. 2013. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5, 3779-3827. https://doi.org/10.3390/nu5103779
- Kim, Y. H. 2016. Probiotics, prebiotics, synbiotics and human health. BT News 23, 17-22.
-
Krga, I., Monfoulet, L. E., Konic-Ristic, A., Mercier, S., Glibetic, M., Morand, C. and Milenkovic, D. 2016. Anthocyanins and their gut metabolites reduce the adhesion of monocyte to
$TNF{\alpha}$ -activated endothelial cells at physiologically relevant concentrations. Arch. Biochem. Biophys. 599, 51-59. https://doi.org/10.1016/j.abb.2016.02.006 - Krikorian, R., Nash, T. A., Shidler, M. D., Shukitt-Hale, B. and Joseph, J. A. 2010. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br. J. Nutr. 103, 730-734. https://doi.org/10.1017/S0007114509992364
- Lamport, D. J., Pal, D., Moutsiana, C., Field, D. T., Williams, C. M., Spencer, J. P. and Butler, L. T. 2015. The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial. Psychopharmacology 232, 3227-3234. https://doi.org/10.1007/s00213-015-3972-4
- Levites, Y., Youdim, M. B., Maor, G. and Mandel, S. 2002. Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem. Pharmacol. 63, 21-29. https://doi.org/10.1016/S0006-2952(01)00813-9
- Ley, R. E., Turnbaugh, P. J., Klein, S. and Gordon, J. I. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022-1023. https://doi.org/10.1038/4441022a
- Lilly, D. M. and Stillwell, R. H. 1965. Probiotics: growth-promoting factors produced by microorganisms. Science 147, 747-748. https://doi.org/10.1126/science.147.3659.747
- Manach, C., Williamson, G., Morand, C., Scalbert, A. and Remesy, C. 2005. Bioavailability and bioefficacy of polyphenols in humans. Am. J. Clin. Nutr. 81, 230S-242S. https://doi.org/10.1093/ajcn/81.1.230S
- Marques, C., Fernandes, I., Meireles, M., Faria, A., Spencer, J. P. E., Mateus, N. and Calhau, C. 2018. Gut microbiota modulation accounts for the neuroprotective properties of anthocyanins. Sci. Rep. 27, 11341.
- Marin, L., Miguelez, E. M., Villar, C. J. and Lombo, F. 2015. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed. Res. Int. 2015, 905215.
- Martin, K. R. 2010. Polyphenols as dietary supplements: A double-edged sword. Nutr. Diet. Suppl. 2, 1-12.
- Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F. and Tillisch, K. 2014. Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci. 34, 15490-15496. https://doi.org/10.1523/JNEUROSCI.3299-14.2014
- Messaoudi, M., Bisson, J. F., Nejdi, A., Rozan, P. and Javelot, H. 2008. Antidepressant-like effects of a cocoa olyphenolic extract in Wistar-Unilever rats. Nutr. Neurosci. 11, 269-276. https://doi.org/10.1179/147683008X344165
- Mirescu, C. and Gould, E. 2006. Stress and adult neurogenesis. Hippocampus 16, 233-238. https://doi.org/10.1002/hipo.20155
- Montiel-Castro, A. J., Gonzalez-Cervantes, R. M., Bravo-Ruiseco, G. and Pacheco-Lopez, G. 2013. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front. Integr. Neurosci. 7, 70.
- Moussa, C., Hebron, M., Huang, X., Ahn, J., Rissman, R. A., Aisen, P. S. and Turner, R. S. 2017. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease. J. Neuroinflammation 14, 1-10. https://doi.org/10.1186/s12974-016-0779-0
- Mrduljas, N., Kresic, G. and Bilusic, T. 2017. Polyphenols: Food sources and health benefits, pp. 23-41. In: Chavarri, M. (ed.), Functional Food-Improve Health through Adequate Food. IntechOpen: Rijeka, Croatia.
- O'Brien, S. M., Scott, L. V. and Dinan, T. G. 2004. Cytokines: abnormalities in major depression and implications for pharmacological treatment. Hum. Psychopharmacol. 19, 397-403. https://doi.org/10.1002/hup.609
- Pase, M. P., Scholey, A. B., Pipingas, A., Kras, M., Nolidin, K., Gibbs, A., Wesnes, K. and Stough, C. 2013. Cocoa polyphenols enhance positive mood states but not cognitive performance: a randomized, placebo-controlled trial. J. Psychopharmacol. 27, 451-458. https://doi.org/10.1177/0269881112473791
- Pasinetti, G. M., Singh, R., Westfall, S., Herman, F., Faith, J. and Ho, L. 2018. The role of the gut microbiota in the metabolism of polyphenols as characterized by gnotobiotic mice. J. Alzheimers Dis. 63, 409-421. https://doi.org/10.3233/JAD-171151
-
Peluso, I., Raguzzini, A. and Serafini, M. 2013. Effect of flavonoids on circulating levels of TNF-
${\alpha}$ and IL-6 in humans: a systematic review and metaanalysis. Mol. Nutr. Food Res. 57, 784-801. https://doi.org/10.1002/mnfr.201200721 - Pipingas, A., Silberstein, R. B., Vitetta, L., Rooy, C. V., Harris, E. V., Young, J. M., Frampton, C. M., Sali, A. and Nastasi, J. 2008. Improved cognitive performance after dietary supplementation with a pinus radiata bark extract formulation. Phytother. Res. 22, 1168-1174. https://doi.org/10.1002/ptr.2388
- Poulose, S. M., Fisher, D. R., Larson, J., Bielinski, D. F., Rimando, A. M., Carey, A. N., Schauss, A. G. and Shukitt-Hale, B. 2012. Anthocyanin-rich acai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. J. Agric. Food Chem. 60, 1084-1093. https://doi.org/10.1021/jf203989k
- Poulose, S. M., Fisher, D. R., Bielinski, D. F., Gomes, S. M., Rimando, A. M., Schauss, A. G. and Shukitt-Hale, B. 2014. Restoration of stressor-induced calcium dysregulation and autophagy inhibition by polyphenol-rich acai (Euterpe spp.) fruit pulp extracts in rodent brain cells in vitro. Nutrition 30, 853-862. https://doi.org/10.1016/j.nut.2013.11.011
- Puupponen-Pimia, R., Aura, A. M., Oksman-Caldentey, K. M., Myllarinen, P., Saarela, M., Mattila-Sandholm, T. and Poutanen, K. 2002. Development of functional ingredients for gut health. Trends Food Sci. Tech. 13, 3-11. https://doi.org/10.1016/S0924-2244(02)00020-1
- Rastmanesh, R. 2011. High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chem. Biol. Interact. 189, 1-8. https://doi.org/10.1016/j.cbi.2010.10.002
- Rendeiro, C., Vauzour, D., Rattray, M., Waffo-Teguo, P., Merillon, J. M., Butler, L. T., Williams C. M. and Spencer, J. P. 2013. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One 8, e63535. https://doi.org/10.1371/journal.pone.0063535
- Rendeiro, C., Rhodes, J. S. and Spencer, J. P. 2015. The mechanisms of action of flavonoids in the brain: direct versus indirect effects. Neurochem. Int. 89, 126-139. https://doi.org/10.1016/j.neuint.2015.08.002
- Sandhu, K. V., Sherwin, E., Schellekens, H., Stanton, C., Dinan, T. G. and Cryan, J. F. 2017. Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Transl. Res. 179, 223-244. https://doi.org/10.1016/j.trsl.2016.10.002
- Sathyapalan, T., Beckett, S., Rigby, A. S., Mellor, D. D. and Atkin, S. L. 2010. High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome. Nutr. J. 9, 55. https://doi.org/10.1186/1475-2891-9-55
- Schroeter, H., Spencer, J. P., Rice-Evans, C. and Williams, R. J. 2001. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem. J. 358, 547-557. https://doi.org/10.1042/bj3580547
- Serra, D., Almeidaa, L. M. and Dinisa, T. C. P. 2018. Dietary polyphenols: a novel strategy to modulate microbiota-gut-brain axis. Trends Food Sci. Technol. 78, 224-233. https://doi.org/10.1016/j.tifs.2018.06.007
- Sorond, F. A., Lipsitz, L. A., Hollenberg, N. K. and Fisher, N. D. 2008. Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans. Neuropsychiatr. Dis. Treat 4, 433-440.
- Sorond, F. A., Hurwitz, S., Salat, D. H., Greve, D. N. and Fisher, N. D. 2013. Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older people. Neurology 81, 904-909. https://doi.org/10.1212/WNL.0b013e3182a351aa
- Spencer, J. P. 2008. Flavonoids: modulators of brain function? Br. J. Nutr. 99, ES60-77. https://doi.org/10.1017/S0007114508965776
- Spencer, J. P. 2009. Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr. 4, 243-250. https://doi.org/10.1007/s12263-009-0136-3
- Spencer, J. P., Vafeiadou, K., Williams, R. J. and Vauzour, D. 2012. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol. Aspects Med. 33, 83-97. https://doi.org/10.1016/j.mam.2011.10.016
- The Human Microbiome Project Consortium. 2012. A framework for human microbiome research. Nature 486, 215-221. https://doi.org/10.1038/nature11209
- Tully, T., Bourtchouladze, R., Scott, R. and Tallman, J. 2003. Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug Discov. 2, 267-277. https://doi.org/10.1038/nrd1061
- Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R. and Gordon, J. I. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027-1031. https://doi.org/10.1038/nature05414
- Vauzour, D., VafeiAdou, K., Rice-Evans, C., Williams, R. J. and Spencer, J. P. 2007. Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J. Neurochem. 103, 1355-1367. https://doi.org/10.1111/j.1471-4159.2007.04841.x
- Vauzour, D. 2012. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid. Med. Cell Longev. 2012, 914273.
- Vauzour, D. 2014. Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer's disease pathophysiology. J. Sci. Food Agric. 94, 1042-1056. https://doi.org/10.1002/jsfa.6473
- Venigalla, M., Gyengesi, E. and Munch, G. 2015. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Neural. Regen. Res. 10, 1181-1185. https://doi.org/10.4103/1673-5374.162686
- Wang, D., Ho, L., Faith, J., Ono, K., Janle, E. M., Lachcik, P. J., Cooper, B. R., Jannasch, A. H., D'Arcy, B. R., Williams, B. A., Ferruzzi, M. G., Levine, S., Zhao, W., Dubner, L. and Pasinetti, G. M. 2015. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease beta-amyloid oligomerization. Mol. Nutr. Food Res. 59, 1025-1040. https://doi.org/10.1002/mnfr.201400544
- Wang, H. X. and Wang, Y. P. 2016. Gut microbiota-brain axis. Chin. Med. J. 129, 2373-2380. https://doi.org/10.4103/0366-6999.190667
- Westfall, S., Lomis, N., Kahouli, I., Dia, S. Y., Singh, S. P. and Prakash, S. 2017. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell. Mol. Life Sci. 74, 3769-3787. https://doi.org/10.1007/s00018-017-2550-9
- Williams, R. J., Spencer, J. P. and Rice-Evans, C. 2004. Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med. 36, 838-849. https://doi.org/10.1016/j.freeradbiomed.2004.01.001
- Williams, R. J. and Spencer, J. P. E. 2012. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for alzheimer disease. Free Radic. Biol. Med. 52, 35-45. https://doi.org/10.1016/j.freeradbiomed.2011.09.010
- Witte, A. V., Kerti, L., Margulies, D. S. and Floel, A. 2014. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J. Neurosci. 34, 7862-7870. https://doi.org/10.1523/JNEUROSCI.0385-14.2014
- Xu, Y., Ku, B. S., Yao, H. Y., Lin, Y. H., Ma, X., Zhang, Y. H. and Li, X. J. 2005. The effects of curcumin on depressive-like behaviors in mice. Eur. J. Pharmacol. 518, 40-46. https://doi.org/10.1016/j.ejphar.2005.06.002
- Xu, Y., Wang, Z., You, W., Zhang, X., Li, S., Barish, P. A., Vernon, M. M., Du, X., Li, G., Pan, J. and Ogle, W. O. 2010. Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system. Eur. Neuropsychopharmacol. 20, 405-413. https://doi.org/10.1016/j.euroneuro.2010.02.013
- Yoon, J. A. and Shin, K. O. 2017. Studies on the function of lactic acid bacteria and related yeasts in probiotics: a review. Kor. J. Food Nutr. 30, 395-404.
- Zoetendal, E. G., Vaughan, E. E. and de Vos, W. M. 2006. A microbial world within us. Mol. Microbiol. 59, 1639-1650. https://doi.org/10.1111/j.1365-2958.2006.05056.x
- Zhu, W. L., Shi, H. S., Wei, Y. M., Wang, S. J., Sun, C. Y., Ding, Z. B. and Lu, L. 2012. Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacol. Res. 65, 74-80. https://doi.org/10.1016/j.phrs.2011.09.007