DOI QR코드

DOI QR Code

The Roles of Dietary Polyphenols in Brain Neuromodulation

뇌 신경조절에서의 식이 폴리페놀 화합물의 역할

  • Lee, Hyeyoung (Division of Applied Bioengineering, Dong-Eui University) ;
  • Lee, Heeseob (Department of Food Science and Nutrition, Pusan National University)
  • 이혜영 (동의대학교 바이오응용공학부) ;
  • 이희섭 (부산대학교 식품영양학과)
  • Received : 2018.11.14
  • Accepted : 2018.11.25
  • Published : 2018.11.30

Abstract

Over recent years, it has become evident that the central nervous system bidirectionally interacts with the gastrointestinal tract along the gut-brain axis. A series of preclinical studies indicate that the gut microbiota can modulate central nervous system function through a multitude of physiological functions. Polyphenols are ubiquitous plant chemicals included in foods such as fruits, vegetables, tea, coffee and wine, and their consumption is directly responsible for beneficial health effects due to antioxidant, anti-inflammatory, antimicrobial, immunomodulatory, anticancer, vasodilating, and prebiotic-like effects. There is increasing evidence that dietary polyphenol can contribute to beneficial effects in neuronal protection acting against oxidative stress and inflammatory injury as well as in cognitive functions. In this paper, we overview the neuroprotective role of dietary polyphenols especially focusing on the neuroinflammation and neurovascular function by interaction with the gut microbiome. Polyphenol metabolites could directly act as neurotransmitters crossing the blood-brain barrier and modulating the cerebrovascular system or indirectly modulating gut microbiota. In addition, evidence suggests that dietary polyphenols are effective in preventing and managing neurological disorders, such as age-related cognitive decline and neurodegeneration, through a multitude of physiological functions. Dietary polyphenols are increasingly envisaged as a potential nutraceuticals in the prevention and treatment of neurological disorders, because they possess the ability to reduce neuroinflammation, to improve memory and cognitive function and to modulate the gut microbiota.

최근의 연구결과를 통해서 중추 신경계와 위장관은 장-뇌 축을 따라서 양방향의 상호작용이 일어나고 있다는 것이 분명해지고 있다. 전임상 연구로부터 장내 마이크로비오타가 다양한 생리적 기능을 통해서 중추 신경계의 기능을 조절할 수 있음이 밝혀지고 있다. 폴리페놀 화합물은 과일, 채소, 차, 커피, 와인과 같은 식품에 존재하는 식물 유래의 물질로, 항산화, 항염증, 항균, 면역 조절, 항암, 혈관 확장 및 프리바이오틱스와 유사한 효과를 보유하고 있어 식이를 통해 섭취할 경우 건강에 직접적인 효과를 나타낸다. 최근 들어 폴리페놀 화합물이 인지 기능뿐만 아니라 산화적 스트레스 및 염증성 손상에 대해 작용하는 신경 보호에 유익한 효과를 줄 수 있다는 증거가 보고되고 있다. 본 총설에서는 신경 세포 신호 전달 경로의 자극, 신경 염증, 혈관 기능 및 장내 마이크로비옴과의 상호작용에 따른 폴리페놀 화합물의 신경 보호 효과와 관련된 작용 메커니즘에 대한 일반적인 개요를 제시한다. 폴리페놀 화합물의 대사 산물은 혈액-뇌 장벽을 가로 지르는 신경 전달 물질을 이용하고 뇌 혈관 시스템을 조절하여 작용하거나, 간접적으로 장내 마이크로비오타에 작용한다. 또한, 폴리페놀 화합물은 노화 관련 인지 기능 저하 및 신경 퇴행과 같은 신경계 질환을 다양한 생리 기능을 통해 효과적으로 관리할수 있다는 사실이 제시되고 있다. 폴리페놀 화합물은 신경 염증을 감소시키고 기억과 인지 기능을 향상 시키며 장내 마이크로비오타를 조절하는 능력을 지니고 있기 때문에 신경계 질환의 예방 및 치료에 있어 잠재적인 기능성 식품으로 주목 받을 것으로 기대된다.

Keywords

SMGHBM_2018_v28n11_1386_f0001.png 이미지

Fig. 1. The gut-brain axis. Five possible bidirectional communication routes between gut and brain, routes for dietary polyphenols and their metabolites, and the modulation of gut-brain axis by dietary polyphenols are illustrated. Adapted from [25, 59, 71, 85].

References

  1. Agostinho, P., Cunha, R. A. and Oliveira, C. 2010. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease. Curr. Pharm. Des. 16, 2766-2778. https://doi.org/10.2174/138161210793176572
  2. Arts, I. C. W. and Hollman, P. C. H. 2005. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 81, 317-325. https://doi.org/10.1093/ajcn/81.1.317S
  3. Aura, A. M., Martin-Lopez, P., O'Leary, K. A., Williamson, G., Oksman-Caldentey, K. M., Poutanen, K. and Santos-Buelga, C. 2005. In vitro metabolism of anthocyanins by human gut microflora. Eur. J. Nutr. 44, 133-142. https://doi.org/10.1007/s00394-004-0502-2
  4. Aura, A. M. 2008. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev. 7, 407-429. https://doi.org/10.1007/s11101-008-9095-3
  5. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. and Gordon, J. I. 2005. Host-bacterial mutualism in the human intestine. Science 307, 1915-1920. https://doi.org/10.1126/science.1104816
  6. Biasi, F., Astegiano, M., Maina, M., Leonarduzzi, G. and Poli, G. 2011. Polyphenol supplementation as a complementary medicinal approach to treating inflammatory bowel disease. Curr. Med. Chem. 18, 4851-4865. https://doi.org/10.2174/092986711797535263
  7. Bowey, E., Adlercreutz, H. and Rowland, I. 2003. Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem. Toxicol. 41, 631-636. https://doi.org/10.1016/S0278-6915(02)00324-1
  8. Breteler, M. M. 2000. Vascular risk factors for Alzheimer's disease: an epidemiologic perspective. Neurobiol. Aging 21, 153-160.
  9. Brickman, A. M., Khan, U. A., Provenzano, F. A., Yeung, L. K., Suzuki, W., Schroeter, H., Wall, M., Sloan, R. P. and Small, S. A. 2014. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat. Neurosci. 17, 1798-1803. https://doi.org/10.1038/nn.3850
  10. Brown, W. R. and Thore, C. R. 2011. Cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol. Appl. Neurobiol. 37, 56-74. https://doi.org/10.1111/j.1365-2990.2010.01139.x
  11. Calani, L., Dall'Asta, M., Derlindati, E., Scazzina, F., Bruni, R. and Del Rio, D. 2012. Colonic metabolism of polyphenols from coffee, green tea, and hazelnut skins. J. Clin. Gastroenterol. 46, S95-S99. https://doi.org/10.1097/MCG.0b013e318264e82b
  12. Calder, P. C., Albers, R., Antoine, J. M., Blum, S., Bourdet-Sicard, R., Ferns, G. A., Folkerts, G., Friedmann, P. S., Frost, G. S., Guarner, F., Lovik, M., Macfarlane, S., Meyer, P. D., M'Rabet, L., Serafini, M., van Eden, W., van Loo, J., Vas Dias, W., Vidry, S., Winklhofer-Roob, B. M. and Zhao, J. 2009. Inflammatory disease processes and interactions with nutrition. Br. J. Nutr. 101, S1-45. https://doi.org/10.1017/S0007114509990511
  13. Casini, M. L., Marelli, G., Papaleo, E., Ferrari, A., D'Ambrosio, F. and Unfer, V. 2006. Psychological assessment of the effects of treatment with phytoestrogens on postmenopausal women: a randomized, double-blind, crossover, placebo-controlled study. Fert. Steril. 85, 972-978. https://doi.org/10.1016/j.fertnstert.2005.09.048
  14. Cryan, J. F. and Dinan, T. G. 2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701-712. https://doi.org/10.1038/nrn3346
  15. Dantzer, R. 2009. Cytokine, sickness behavior, and depression. Immunol. Allergy Clin. North Am. 29, 247-264. https://doi.org/10.1016/j.iac.2009.02.002
  16. DeGruttola, A. K., Low, D., Mizoguchi, A. and Mizoguchi, E. 2016. Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis. 22, 1137-1150. https://doi.org/10.1097/MIB.0000000000000750
  17. Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G. and Crozier, A. 2013. Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 18, 1818-1892. https://doi.org/10.1089/ars.2012.4581
  18. Dias, G. P., Cavegn, N., Nix, A., do Nascimento Bevilaqua, M. C., Stangl, D., Zainuddin, M. S., Nardi, A. E., Gardino, P. F. and Thuret, S. 2012. The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety. Oxid. Med. Cell Longev. 2012, 541971.
  19. di Gesso, J. L., Kerr, J. S., Zhang, Q., Raheem, S., Yalamanchili, S. K., O'Hagan, D., Kay, C. D. and O'Connell, M. A. 2015. Flavonoid metabolites reduce tumor necrosis factor-${\alpha}$ secretion to a greater extent than their precursor compounds in human THP-1 monocytes. Mol. Nutr. Food Res. 59, 1143-1154. https://doi.org/10.1002/mnfr.201400799
  20. Dinan, T. G., Stanton, C. and Cryan, J. F. 2013. Psychobiotics: a novel class of psychotropic. Biol. Psychiatry 74, 720-726. https://doi.org/10.1016/j.biopsych.2013.05.001
  21. Duenas, M., Munoz-Gonzalez, I., Cueva, C., Jimenez-Giron, A., Sanchez-Patan, F., Santos-Buelga, C., Moreno-Arribas, M. V. and Bartolome, B. 2015. A survey of modulation of gut microbiota by dietary polyphenols. Biomed. Res. Int. 2015, 850902.
  22. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. and Relman, D. A. 2005. Diversity of the human intestinal microbial flora. Science 308, 1635-1638. https://doi.org/10.1126/science.1110591
  23. FAO/WHO. 2002. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. April 30-May 1. Ontario, Canada.
  24. Farzaei, M. H., Rahimi, R. and Abdollahi, M. 2015. The role of dietary polyphenols in the management of inflammatory bowel disease. Curr. Pharm. Biotechnol. 16, 196-210. https://doi.org/10.2174/1389201016666150118131704
  25. Filosa, S., Di Meo, F. and Crispi, S. 2018. Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regen. Res. 13, 2055-2059. https://doi.org/10.4103/1673-5374.241429
  26. Flanagan, E., Muller, M., Hornberger, M. and Vauzour, D. 2018. Impact of flavonoids on cellular and molecular mechanisms underlying age-related cognitive decline and neurodegeneration. Curr. Nutr. Rep. 7, 49-57. https://doi.org/10.1007/s13668-018-0226-1
  27. Fraga, C. G., Galleano, M., Verstraeten, S. V. and Oteiza, P. I. 2010. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med. 31, 435-445. https://doi.org/10.1016/j.mam.2010.09.006
  28. Frank, D. N. and Pace, N. R. 2008. Gastrointestinal microbiology enters the metagenomics era. Curr. Opin. Gastroenterol. 24, 4-10. https://doi.org/10.1097/MOG.0b013e3282f2b0e8
  29. Frank-Cannon, T. C., Alto, L. T., McAlpine, F. E. and Tansey, M. G. 2009. Does neuroinflammation fan the flame in neurodegenerative diseases. Mol. Neurodegener. 4, 47. https://doi.org/10.1186/1750-1326-4-47
  30. Garcia-Lafuente, A., Guillamon, E., Villares, A., Rostagno, M. A. and Martinez, J. A. 2009. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res. 58, 537-552. https://doi.org/10.1007/s00011-009-0037-3
  31. Ghanim, H., Sia, C. L., Abuaysheh, S., Korzeniewski, K., Patnaik, P., Marumganti, A., Chaudhuri, A. and Dandona, P. 2010. An antiinflammatory and reactive oxygen species suppressive effects of an extract of polygonum cuspidatum containing resveratrol. J. Clin. Endocrinol. Metab. 95, E1-8.
  32. Graf, B. A., Milbury, P. E. and Blumberg, J. B. 2005. Flavonols, flavonones, flavanones and human health: epidemological evidence. J. Med. Food 8, 281-290. https://doi.org/10.1089/jmf.2005.8.281
  33. Harris, K., Kassis, A., Major, G. and Chou, C. J. 2012. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J. Obes. 2012, 879151.
  34. Hattori, M. and Taylor, T. D. 2009. The human intestinal microbiome: a new frontier of human biology. DNA Res. 16, 1-12. https://doi.org/10.1093/dnares/dsn033
  35. Impey, S., Smith, D. M., Obrietan, K., Donahue, R., Wade, C. and Storm, D. R. 1998. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1, 595-601. https://doi.org/10.1038/2830
  36. Jankord, R. and Herman, J. P. 2008. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann. N. Y. Acad. Sci. 1148, 64-73. https://doi.org/10.1196/annals.1410.012
  37. Kennedy, D. O. 2014. Polyphenols and the human Brain: plant "secondary metabolite" ecologic roles and endogenous signaling functions drive benefits. Adv. Nutr. 5, 515-533. https://doi.org/10.3945/an.114.006320
  38. Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., Rush, A. J., Walters, E. E. and Wang, P. S. 2003. The epidemiology of major depressive disorder: results from the national comorbidity survey replication (ncs-r). Jama 289, 3095-3105. https://doi.org/10.1001/jama.289.23.3095
  39. Khurana, S., Venkataraman, K., Hollingsworth, A., Piche, M. and Tai, T. C. 2013. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5, 3779-3827. https://doi.org/10.3390/nu5103779
  40. Kim, Y. H. 2016. Probiotics, prebiotics, synbiotics and human health. BT News 23, 17-22.
  41. Krga, I., Monfoulet, L. E., Konic-Ristic, A., Mercier, S., Glibetic, M., Morand, C. and Milenkovic, D. 2016. Anthocyanins and their gut metabolites reduce the adhesion of monocyte to $TNF{\alpha}$-activated endothelial cells at physiologically relevant concentrations. Arch. Biochem. Biophys. 599, 51-59. https://doi.org/10.1016/j.abb.2016.02.006
  42. Krikorian, R., Nash, T. A., Shidler, M. D., Shukitt-Hale, B. and Joseph, J. A. 2010. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br. J. Nutr. 103, 730-734. https://doi.org/10.1017/S0007114509992364
  43. Lamport, D. J., Pal, D., Moutsiana, C., Field, D. T., Williams, C. M., Spencer, J. P. and Butler, L. T. 2015. The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial. Psychopharmacology 232, 3227-3234. https://doi.org/10.1007/s00213-015-3972-4
  44. Levites, Y., Youdim, M. B., Maor, G. and Mandel, S. 2002. Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem. Pharmacol. 63, 21-29. https://doi.org/10.1016/S0006-2952(01)00813-9
  45. Ley, R. E., Turnbaugh, P. J., Klein, S. and Gordon, J. I. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022-1023. https://doi.org/10.1038/4441022a
  46. Lilly, D. M. and Stillwell, R. H. 1965. Probiotics: growth-promoting factors produced by microorganisms. Science 147, 747-748. https://doi.org/10.1126/science.147.3659.747
  47. Manach, C., Williamson, G., Morand, C., Scalbert, A. and Remesy, C. 2005. Bioavailability and bioefficacy of polyphenols in humans. Am. J. Clin. Nutr. 81, 230S-242S. https://doi.org/10.1093/ajcn/81.1.230S
  48. Marques, C., Fernandes, I., Meireles, M., Faria, A., Spencer, J. P. E., Mateus, N. and Calhau, C. 2018. Gut microbiota modulation accounts for the neuroprotective properties of anthocyanins. Sci. Rep. 27, 11341.
  49. Marin, L., Miguelez, E. M., Villar, C. J. and Lombo, F. 2015. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed. Res. Int. 2015, 905215.
  50. Martin, K. R. 2010. Polyphenols as dietary supplements: A double-edged sword. Nutr. Diet. Suppl. 2, 1-12.
  51. Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F. and Tillisch, K. 2014. Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci. 34, 15490-15496. https://doi.org/10.1523/JNEUROSCI.3299-14.2014
  52. Messaoudi, M., Bisson, J. F., Nejdi, A., Rozan, P. and Javelot, H. 2008. Antidepressant-like effects of a cocoa olyphenolic extract in Wistar-Unilever rats. Nutr. Neurosci. 11, 269-276. https://doi.org/10.1179/147683008X344165
  53. Mirescu, C. and Gould, E. 2006. Stress and adult neurogenesis. Hippocampus 16, 233-238. https://doi.org/10.1002/hipo.20155
  54. Montiel-Castro, A. J., Gonzalez-Cervantes, R. M., Bravo-Ruiseco, G. and Pacheco-Lopez, G. 2013. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front. Integr. Neurosci. 7, 70.
  55. Moussa, C., Hebron, M., Huang, X., Ahn, J., Rissman, R. A., Aisen, P. S. and Turner, R. S. 2017. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease. J. Neuroinflammation 14, 1-10. https://doi.org/10.1186/s12974-016-0779-0
  56. Mrduljas, N., Kresic, G. and Bilusic, T. 2017. Polyphenols: Food sources and health benefits, pp. 23-41. In: Chavarri, M. (ed.), Functional Food-Improve Health through Adequate Food. IntechOpen: Rijeka, Croatia.
  57. O'Brien, S. M., Scott, L. V. and Dinan, T. G. 2004. Cytokines: abnormalities in major depression and implications for pharmacological treatment. Hum. Psychopharmacol. 19, 397-403. https://doi.org/10.1002/hup.609
  58. Pase, M. P., Scholey, A. B., Pipingas, A., Kras, M., Nolidin, K., Gibbs, A., Wesnes, K. and Stough, C. 2013. Cocoa polyphenols enhance positive mood states but not cognitive performance: a randomized, placebo-controlled trial. J. Psychopharmacol. 27, 451-458. https://doi.org/10.1177/0269881112473791
  59. Pasinetti, G. M., Singh, R., Westfall, S., Herman, F., Faith, J. and Ho, L. 2018. The role of the gut microbiota in the metabolism of polyphenols as characterized by gnotobiotic mice. J. Alzheimers Dis. 63, 409-421. https://doi.org/10.3233/JAD-171151
  60. Peluso, I., Raguzzini, A. and Serafini, M. 2013. Effect of flavonoids on circulating levels of TNF-${\alpha}$ and IL-6 in humans: a systematic review and metaanalysis. Mol. Nutr. Food Res. 57, 784-801. https://doi.org/10.1002/mnfr.201200721
  61. Pipingas, A., Silberstein, R. B., Vitetta, L., Rooy, C. V., Harris, E. V., Young, J. M., Frampton, C. M., Sali, A. and Nastasi, J. 2008. Improved cognitive performance after dietary supplementation with a pinus radiata bark extract formulation. Phytother. Res. 22, 1168-1174. https://doi.org/10.1002/ptr.2388
  62. Poulose, S. M., Fisher, D. R., Larson, J., Bielinski, D. F., Rimando, A. M., Carey, A. N., Schauss, A. G. and Shukitt-Hale, B. 2012. Anthocyanin-rich acai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. J. Agric. Food Chem. 60, 1084-1093. https://doi.org/10.1021/jf203989k
  63. Poulose, S. M., Fisher, D. R., Bielinski, D. F., Gomes, S. M., Rimando, A. M., Schauss, A. G. and Shukitt-Hale, B. 2014. Restoration of stressor-induced calcium dysregulation and autophagy inhibition by polyphenol-rich acai (Euterpe spp.) fruit pulp extracts in rodent brain cells in vitro. Nutrition 30, 853-862. https://doi.org/10.1016/j.nut.2013.11.011
  64. Puupponen-Pimia, R., Aura, A. M., Oksman-Caldentey, K. M., Myllarinen, P., Saarela, M., Mattila-Sandholm, T. and Poutanen, K. 2002. Development of functional ingredients for gut health. Trends Food Sci. Tech. 13, 3-11. https://doi.org/10.1016/S0924-2244(02)00020-1
  65. Rastmanesh, R. 2011. High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chem. Biol. Interact. 189, 1-8. https://doi.org/10.1016/j.cbi.2010.10.002
  66. Rendeiro, C., Vauzour, D., Rattray, M., Waffo-Teguo, P., Merillon, J. M., Butler, L. T., Williams C. M. and Spencer, J. P. 2013. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One 8, e63535. https://doi.org/10.1371/journal.pone.0063535
  67. Rendeiro, C., Rhodes, J. S. and Spencer, J. P. 2015. The mechanisms of action of flavonoids in the brain: direct versus indirect effects. Neurochem. Int. 89, 126-139. https://doi.org/10.1016/j.neuint.2015.08.002
  68. Sandhu, K. V., Sherwin, E., Schellekens, H., Stanton, C., Dinan, T. G. and Cryan, J. F. 2017. Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Transl. Res. 179, 223-244. https://doi.org/10.1016/j.trsl.2016.10.002
  69. Sathyapalan, T., Beckett, S., Rigby, A. S., Mellor, D. D. and Atkin, S. L. 2010. High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome. Nutr. J. 9, 55. https://doi.org/10.1186/1475-2891-9-55
  70. Schroeter, H., Spencer, J. P., Rice-Evans, C. and Williams, R. J. 2001. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem. J. 358, 547-557. https://doi.org/10.1042/bj3580547
  71. Serra, D., Almeidaa, L. M. and Dinisa, T. C. P. 2018. Dietary polyphenols: a novel strategy to modulate microbiota-gut-brain axis. Trends Food Sci. Technol. 78, 224-233. https://doi.org/10.1016/j.tifs.2018.06.007
  72. Sorond, F. A., Lipsitz, L. A., Hollenberg, N. K. and Fisher, N. D. 2008. Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans. Neuropsychiatr. Dis. Treat 4, 433-440.
  73. Sorond, F. A., Hurwitz, S., Salat, D. H., Greve, D. N. and Fisher, N. D. 2013. Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older people. Neurology 81, 904-909. https://doi.org/10.1212/WNL.0b013e3182a351aa
  74. Spencer, J. P. 2008. Flavonoids: modulators of brain function? Br. J. Nutr. 99, ES60-77. https://doi.org/10.1017/S0007114508965776
  75. Spencer, J. P. 2009. Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr. 4, 243-250. https://doi.org/10.1007/s12263-009-0136-3
  76. Spencer, J. P., Vafeiadou, K., Williams, R. J. and Vauzour, D. 2012. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol. Aspects Med. 33, 83-97. https://doi.org/10.1016/j.mam.2011.10.016
  77. The Human Microbiome Project Consortium. 2012. A framework for human microbiome research. Nature 486, 215-221. https://doi.org/10.1038/nature11209
  78. Tully, T., Bourtchouladze, R., Scott, R. and Tallman, J. 2003. Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug Discov. 2, 267-277. https://doi.org/10.1038/nrd1061
  79. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R. and Gordon, J. I. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027-1031. https://doi.org/10.1038/nature05414
  80. Vauzour, D., VafeiAdou, K., Rice-Evans, C., Williams, R. J. and Spencer, J. P. 2007. Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J. Neurochem. 103, 1355-1367. https://doi.org/10.1111/j.1471-4159.2007.04841.x
  81. Vauzour, D. 2012. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid. Med. Cell Longev. 2012, 914273.
  82. Vauzour, D. 2014. Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer's disease pathophysiology. J. Sci. Food Agric. 94, 1042-1056. https://doi.org/10.1002/jsfa.6473
  83. Venigalla, M., Gyengesi, E. and Munch, G. 2015. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Neural. Regen. Res. 10, 1181-1185. https://doi.org/10.4103/1673-5374.162686
  84. Wang, D., Ho, L., Faith, J., Ono, K., Janle, E. M., Lachcik, P. J., Cooper, B. R., Jannasch, A. H., D'Arcy, B. R., Williams, B. A., Ferruzzi, M. G., Levine, S., Zhao, W., Dubner, L. and Pasinetti, G. M. 2015. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease beta-amyloid oligomerization. Mol. Nutr. Food Res. 59, 1025-1040. https://doi.org/10.1002/mnfr.201400544
  85. Wang, H. X. and Wang, Y. P. 2016. Gut microbiota-brain axis. Chin. Med. J. 129, 2373-2380. https://doi.org/10.4103/0366-6999.190667
  86. Westfall, S., Lomis, N., Kahouli, I., Dia, S. Y., Singh, S. P. and Prakash, S. 2017. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell. Mol. Life Sci. 74, 3769-3787. https://doi.org/10.1007/s00018-017-2550-9
  87. Williams, R. J., Spencer, J. P. and Rice-Evans, C. 2004. Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med. 36, 838-849. https://doi.org/10.1016/j.freeradbiomed.2004.01.001
  88. Williams, R. J. and Spencer, J. P. E. 2012. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for alzheimer disease. Free Radic. Biol. Med. 52, 35-45. https://doi.org/10.1016/j.freeradbiomed.2011.09.010
  89. Witte, A. V., Kerti, L., Margulies, D. S. and Floel, A. 2014. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J. Neurosci. 34, 7862-7870. https://doi.org/10.1523/JNEUROSCI.0385-14.2014
  90. Xu, Y., Ku, B. S., Yao, H. Y., Lin, Y. H., Ma, X., Zhang, Y. H. and Li, X. J. 2005. The effects of curcumin on depressive-like behaviors in mice. Eur. J. Pharmacol. 518, 40-46. https://doi.org/10.1016/j.ejphar.2005.06.002
  91. Xu, Y., Wang, Z., You, W., Zhang, X., Li, S., Barish, P. A., Vernon, M. M., Du, X., Li, G., Pan, J. and Ogle, W. O. 2010. Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system. Eur. Neuropsychopharmacol. 20, 405-413. https://doi.org/10.1016/j.euroneuro.2010.02.013
  92. Yoon, J. A. and Shin, K. O. 2017. Studies on the function of lactic acid bacteria and related yeasts in probiotics: a review. Kor. J. Food Nutr. 30, 395-404.
  93. Zoetendal, E. G., Vaughan, E. E. and de Vos, W. M. 2006. A microbial world within us. Mol. Microbiol. 59, 1639-1650. https://doi.org/10.1111/j.1365-2958.2006.05056.x
  94. Zhu, W. L., Shi, H. S., Wei, Y. M., Wang, S. J., Sun, C. Y., Ding, Z. B. and Lu, L. 2012. Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacol. Res. 65, 74-80. https://doi.org/10.1016/j.phrs.2011.09.007