Fig. 1. Schematic representation of N-linked and O-linked glycans on glycoproteins and glycolipids [44].
Fig. 2. Accelerating progress in the discovery of human glycosylation disorders. The graph shows the cumulative number of human disorders with a major genetic defect in various glycosylation pathways and the year of their identification. In early years, initial discovery was based on compelling biochemical evidence, and in later years by conclusive genetic proof. In most instances, the year indicates the occurrence of definitive proof of gene-specific mutations and correlations to biochemical results [38].
Fig. 3. Schematic diagram of the plasma membrane (left). The spheres are saccharides attached to proteins (glycoprotein). The arrows indicate the sialic acids attached to terminal positions of glycoproteins. The structure of sialic acid (α2-3) galactose is presented on the right [41].
Fig. 4. N-glycan MALDI mass spectrometry imaging (MSI) of stage I (n=3) and stage III (n=3) serous ovarian cancer patients. Formalin-fixed paraffin-embedded tissue sections were treated with citric acid antigen retrieval prior to printing of dialyzed PNGase F with 250 μm spacing. DHB matrix was sprayed onto the sections and MS spectra were acquired by oversampling at 100 μm intervals using a MALDI-TOF/TOF MS instrument. Monoisotopic glycan masses were measured in the positive ion reflectron mode as (M + Na) adducts for MALDI-MSI whereas PGCLC-ESI-MS/MS revealed doubly negatively charged monoisotopic masses ([M-2H] 2-). Panels A-F show ion intensity maps of m/z 16663.581 from the stage I (green) and stage III (red) patients. The N-glycan, (Hex)1 (HexNAc)3 (Deoxyhexose) 1 + (Man)3(GlcNAc)2, in panel G is the confirmed structure based on PGC chromatography (panel H) and MS/MS fragmentation (panel I) [4].
참고문헌
- Abou-Abbass, H., Abou-El-Hassan, H., Bahmad, H., Zibara, K., Zebian, A., Youssef, R., Ismail, J., Zhu, R., Zhou, S., Dong, X., Nasser, M., Bahmad, M., Darwish, H., Mechref, Y. and Kobeissy, F. 2016. Glycosylation and other PTMs alterations in neurodegenerative diseases: Current status and future role in neurotrauma. Electrophoresis 37, 1549-1561. https://doi.org/10.1002/elps.201500585
- Angata, T., Fujinawa, R., Kurimoto, A., Nakajima, K., Kato, M., Takamatsu, S., Korekane, H., Gao, C. X., Ohtsubo, K., Kitazume, S. and Taniguchi, N. 2012. Integrated approach toward the discovery of glyco-biomarkers of inflammation-related diseases. Ann. N. Y. Acad. Sci. 1253, 159-169. https://doi.org/10.1111/j.1749-6632.2012.06469.x
- Bertozzi, C. R. and Kiessling, L. L. 2001. Chemical glycobiology. Science 291, 2357-2364. https://doi.org/10.1126/science.1059820
- Briggs, M. T., Condina, M. R., Klingler-Hoffmann, M., Arentz, G., Everest-Dass, A. V., Kaur, G., Oehler, M. K., Packer, N. H. and Hoffmann, P. 2018. Translating N-Glycan analytical applications into clinical strategies for ovarian cancer. Proteomics Clin. Appl. e1800099.
- Cowper, B., Li, X., Yu, L., Zhou, Y., Fan, W. H. and Rao, C. M. 2018. Comprehensive glycan analysis of twelve recombinant human erythropoietin preparations from manufacturers in China and Japan. J. Pharm. Biomed. Anal. 153, 214-220. https://doi.org/10.1016/j.jpba.2018.02.043
- Dell, A. and Morris, H. R. 2001. Glycoprotein structure determination by mass spectrometry. Science 291, 2351-2356. https://doi.org/10.1126/science.1058890
- Endo, T. 2011. Glycan changes during brain aging and age-associated diseases. Seikagaku 83, 197-204.
- Gaymard, A., Le Briand, N., Frobert, E., Lina, B. and Escuret, V. 2016. Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clin. Microbiol. Infect. 22, 975-983. https://doi.org/10.1016/j.cmi.2016.07.007
- Gong, B., Cukan, M., Fisher, R., Li, H., Stadheim, T. A. and Gerngross, T. 2009. Characterization of N-linked glycosylation on recombinant glycoproteins produced in Pichia pastoris using ESI-MS and MALDI-TOF. Methods Mol. Biol. 534, 213-223.
- Helenius, A. and Aebi, M. 2001. Intracellular functions of N-linked glycans. Science 291, 2364-2369. https://doi.org/10.1126/science.291.5512.2364
- Ito, H., Kameyama, A., Sato, T. and Narimatsu, H. 2009. Preparation of a glycan library using a variety of glycosyltrasferases. Methods Mol. Biol. 534, 283-291.
- Jeong, H. J., Kim, Y. G., Yang, Y. H. and Kim, B. G. 2012. High-throughput quantitative analysis of total N-glycans by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 84, 3453-3460. https://doi.org/10.1021/ac203440c
- Jiang, K., Zhu, H., Li, L., Guo, Y., Gashash, E., Ma, C., Sun, X., Li, J., Zhang, L. and Wang, P. G. 2017. Sialic acid linkage-specific permethylation for improved profiling of protein glycosylation by MALDI-TOF MS. Anal. Chim. Acta. 981, 53-61. https://doi.org/10.1016/j.aca.2017.05.029
- Kaneshiro, K., Watanabe, M., Terasawa, K., Uchimura, H., Fukuyama, Y., Iwamoto, S., Sato, T. A., Shimizu, K., Tsujimoto, G. and Tanaka, K. 2012. Rapid quantitative profiling of N-glycan by the glycan-labeling method using 3-aminoquinoline/alpha-cyano-4-hydroxycinnamic acid. Anal. Chem. 84, 7146-7151. https://doi.org/10.1021/ac301484f
- Kim, C. U., Chen, X. and Mendel, D. B. 1999. Neuraminidase inhibitors as anti-influenza virus agents. Antivir. Chem. Chemother. 10, 141-154. https://doi.org/10.1177/095632029901000401
- Kizuka, Y., Kitazume, S. and Taniguchi, N. 2017. N-glycan and Alzheimer's disease. Biochim. Biophys. Acta. Gen. Subj. 1861, 2447-2454. https://doi.org/10.1016/j.bbagen.2017.04.012
- Lasswitz, L., Chandra, N., Arnberg, N. and Gerold, G. 2018. Glycomics and proteomics approaches to investigate early adenovirus-host cell interactions. J. Mol. Biol. 430, 1863-1882. https://doi.org/10.1016/j.jmb.2018.04.039
- Lew, W., Chen, X. and Kim, C. U. 2000. Discovery and development of GS 4104 (oseltamivir): an orally active influenza neuraminidase inhibitor. Curr. Med. Chem. 7, 663-672. https://doi.org/10.2174/0929867003374886
- Li, Y., Cao, H., Dao, N., Luo, Z., Yu, H., Chen, Y., Xing, Z., Baumgarth, N., Cardona, C. and Chen, X. 2011. High-throughput neuraminidase substrate specificity study of human and avian influenza A viruses. Virology 415, 12-19. https://doi.org/10.1016/j.virol.2011.03.024
- Manz, C. and Pagel, K. 2018. Glycan analysis by ion mobility-mass spectrometry and gas-phase spectroscopy. Curr. Opin. Chem. Biol. 42, 16-24.
- Mastrangeli, R., Satwekar, A., Cutillo, F., Ciampolillo, C., Palinsky, W. and Longobardi, S. 2017. In-vivo biological activity and glycosylation analysis of a biosimilar recombinant human follicle-stimulating hormone product (Bemfola) compared with its reference medicinal product (GONAL-f). PLoS One 12, e0184139. https://doi.org/10.1371/journal.pone.0184139
- Matsumoto, K., Shimizu, C., Arao, T., Andoh, M., Katsumata, N., Kohno, T., Yonemori, K., Koizumi, F., Yokote, H., Aogi, K., Tamura, K., Nishio, K. and Fujiwara, Y. 2009. Identification of predictive biomarkers for response to trastuzumab using plasma FUCA activity and N-glycan identified by MALDI-TOF-MS. J. Proteome Res. 8, 457-462. https://doi.org/10.1021/pr800655p
- Moskal, J. R., Kroes, R. A. and Dawson, G. 2009. The glycobiology of brain tumors: disease relevance and therapeutic potential. Expert. Rev. Neurother. 9, 1529-1545. https://doi.org/10.1586/ern.09.105
- Muthana, S. M. and Gildersleeve, J. C. 2014. Glycan microarrays: powerful tools for biomarker discovery. Cancer Biomark 14, 29-41. https://doi.org/10.3233/CBM-130383
- Pan, S., Brentnall, T. A. and Chen, R. 2016. Glycoproteins and glycoproteomics in pancreatic cancer. World J. Gastroenterol. 22, 9288-9299. https://doi.org/10.3748/wjg.v22.i42.9288
- Pang, X., Li, H., Guan, F. and Li, X. 2018. Multiple Roles of Glycans in Hematological Malignancies. Front Oncol. 8, 364. https://doi.org/10.3389/fonc.2018.00364
- Pomin, V. H., Bezerra, F. F. and Soares, P. A. G. 2017. Sulfated Glycans in HIV Infection and Therapy. Curr. Pharm. Des. 23, 3405-3414.
- Rudd, P. M., Elliott, T., Cresswell, P., Wilson, I. A. and Dwek, R. A. 2001. Glycosylation and the immune system. Science 291, 2370-2376. https://doi.org/10.1126/science.291.5512.2370
- Sears, P. and Wong, C. H. 2001. Toward automated synthesis of oligosaccharides and glycoproteins. Science 291, 2344-2350. https://doi.org/10.1126/science.1058899
- Sethi, M. K., Kim, H., Park, C. K., Baker, M. S., Paik, Y. K., Packer, N. H., Hancock, W. S., Fanayan, S. and Thaysen-Andersen, M. 2015. In-depth N-glycome profiling of paired colorectal cancer and non-tumorigenic tissues reveals cancer-, stage- and EGFR-specific protein N-glycosylation. Glycobiology 25, 1064-1078. https://doi.org/10.1093/glycob/cwv042
- Sewell, R., Backstrom, M., Dalziel, M., Gschmeissner, S., Karlsson, H., Noll, T., Gatgens, J., Clausen, H., Hansson, G. C., Burchell, J. and Taylor-Papadimitriou, J. 2006. The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J. Biol. Chem. 281, 3586-3594. https://doi.org/10.1074/jbc.M511826200
- Smith, D. F. and Cummings, R. D. 2014. Investigating virus-glycan interactions using glycan microarrays. Curr. Opin. Virol. 7, 79-87. https://doi.org/10.1016/j.coviro.2014.05.005
- Song, Y. 2016. Function of membrane-associated proteoglycans in the regulation of satellite cell growth. Adv. Exp. Med. Biol. 900, 61-95.
- Sprovieri, P. and Martino, G. 2018. The role of the carbohydrates in plasmatic membrane. Physiol. Res. 67, 1-11.
- Tanaka, T., Yoneyama, T., Noro, D., Imanishi, K., Kojima, Y., Hatakeyama, S., Tobisawa, Y., Mori, K., Yamamoto, H., Imai, A., Yoneyama, T., Hashimoto, Y., Koie, T., Tanaka, M., Nishimura, S. I., Kurauchi, S., Takahashi, I. and Ohyama, C. 2017. Aberrant N-Glycosylation profile of serum immunoglobulins is a diagnostic biomarker of urothelial carcinomas. Int. J. Mol. Sci. 18, pii: E2632.
- Terkelsen, T., Haakensen, V. D., Saldova, R., Gromov, P., Hansen, M. K., Stockmann, H., Lingjaerde, O. C., Borresen-Dale, A. L., Papaleo, E., Helland, A., Rudd, P. M. and Gromova, I. 2018. N-glycan signatures identified in tumor interstitial fluid and serum of breast cancer patients: association with tumor biology and clinical outcome. Mol. Oncol. 12, 972-990. https://doi.org/10.1002/1878-0261.12312
- Tian, H., Miyoshi, E., Kawaguchi, N., Shaker, M., Ito, Y., Taniguchi, N., Tsujimoto, M. and Matsuura, N. 2008. The implication of N-acetylglucosaminyltransferase V expression in gastric cancer. Pathobiology 75, 288-294. https://doi.org/10.1159/000151709
- Varki, A. 2017. Biological roles of glycans. Glycobiology 27, 3-49. https://doi.org/10.1093/glycob/cww086
- Wagner, R., Matrosovich, M. and Klenk, H. D. 2002. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev. Med. Virol. 12, 159-166. https://doi.org/10.1002/rmv.352
- Wells, L., Vosseller, K. and Hart, G. W. 2001. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376-2378. https://doi.org/10.1126/science.1058714
- Yoo, E. S. 2011. Study of specific oligosaccharide structures related with swine flu (H1N1) and avian flu, and tamiflu as their remedy. J. Microbiol. Biotechnol. 21, 449-454. https://doi.org/10.4014/jmb.1009.09013
- Zaia, J. 2010. Mass spectrometry and glycomics. OMICS. 14, 401-418. https://doi.org/10.1089/omi.2009.0146
- Zhang, Y., Yin, H. and Lu, H. 2012. Recent progress in quantitative glycoproteomics. Glycoconj. J. 29, 249-258. https://doi.org/10.1007/s10719-012-9398-x
- Zhang, Z., Wuhrer, M. and Holst, S. 2018. Serum sialylation changes in cancer. Glycoconj. J. 35, 139-160. https://doi.org/10.1007/s10719-018-9820-0