Fig. 1. Color change (A) and UV—Vis spectrum (B) of culture supernatant of B. thuringiensis CH3 in a time-dependent manner.
Fig. 2. Influence of temperature (A) and pH (C) on synthesis of silver nanoparticles. Spectra (B) and (D) show the synthesis of silver nanoparticles at 40℃ and pH 8.5, respectively.
Fig. 3. FESEM (A), TEM (B) images and EDS spectrum of silver nanoparticle synthesized by culture supernatant of Bacillus thuringiensis CH3.
Fig. 4. X-ray diffraction pattern of silver nanoparticle synthesized by culture supernatant of Bacillus thuringiensis CH3.
Fig. 5. Particle-size distribution (A) and zeta potential (B) of silver nanoparticle synthesized by culture supernatant of Bacillus thuringiensis CH3.
Fig. 6. Antimicrobial activity of silver nanoparticle (SNP) against K. pneumoniae (A), L. monocytogenes (B) and C. albicans (C). FESEM images present intact cells and silver nanoparticle-treated cells.
참고문헌
- Anthony, K. J. P., Murugan, M., Jeyaraj, M., Rathinam, N., K. and Sangiliyandi, G. 2014. Synthesis of silver nanoparticles using pine mushroom extract: A potential antimicrobial agent against E. coli and B. subtilis. J. Ind. Eng. Chem. 20, 2325-2331. https://doi.org/10.1016/j.jiec.2013.10.008
- Balakumaran, M. D., Ramachandran, R., Balashanmugam, P., Mukeshkumar, D. J. and Kalaichelvan, P. T. 2016. Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol. Res. 182, 8-10. https://doi.org/10.1016/j.micres.2015.09.009
- Bankar, A. V., Joshi, B. S., Kumar, A. R. and Zinjarde, S S. 2010. Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B 80, 45-50. https://doi.org/10.1016/j.colsurfb.2010.05.029
- Dhoondia, Z. H. and Chakraborty, H. 2013. Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomater. Nanotechnol. 2, 1-7.
- Eckhardt, S., Brunetto, P. S., Gagnon, J., Priebe, M., Giese, B. and Fromm, K. M. 2013. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem. Rev. 113, 4708-4754. https://doi.org/10.1021/cr300288v
- Faramarzi, M. A. and Sadighi, A. 2013. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv. Colloid Interface Sci. 189-190, 1-20. https://doi.org/10.1016/j.cis.2012.12.001
- Gade, A. K., Bonde, P., Ingle, A. P., Marcato, P. D., Duran, N. and Rai, M. K. 2008. Exploitation of Aspergillus niger for fabrication of silver nanoparticles. J. Biobased Mater. Bioener. 2, 243-247. https://doi.org/10.1166/jbmb.2008.401
- Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A. and Rai, M. 2009. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5, 382-386. https://doi.org/10.1016/j.nano.2009.06.005
- Gopinath, V. and Velusamy, P. 2013. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim. Acta A 106, 170-174. https://doi.org/10.1016/j.saa.2012.12.087
- Harish, B. S., Uppuluri, K. B. and Anbazhagan, V. 2015. Synthesis of fibrinolytic active silver nanoparticle using wheat bran xylan as a reducing and stabilizing agent. Carbohydr. Polym. 132, 104-110. https://doi.org/10.1016/j.carbpol.2015.06.069
- Holder, I. A. and Boyce, S. T. 1994. Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns 20, 426-429. https://doi.org/10.1016/0305-4179(94)90035-3
- Jain, N., Bhargava, A., Majumdar, S., Tarafdarb, J. C. and Panwar, J. 2011. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3, 635-641. https://doi.org/10.1039/C0NR00656D
- Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M. and Gurunathan, S. 2008. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B 65, 150-153. https://doi.org/10.1016/j.colsurfb.2008.02.018
- Kathiravan, V., Ravi, S., Ashokkumar, S., Velmurugan, S., Elumalai, K. and Khatiwada, C. P. 2015. Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochim. Acta A 139, 200-205. https://doi.org/10.1016/j.saa.2014.12.022
- Kim, J. C., Kim, M. J., Son, H. S., Ryu, E. Y., Park, G. T., Son, H. J. and Lee, S. J. 2007. Isolation and characterization of a feather-degrading bacterium for recycling of keratinous protein waste. J. Environ. Sci. 12, 1337-1343.
- Malaikozhundan, B., Vaseeharan, B., Vijayakumar, S., Sudhakaran, R., Gobi, N. and Shanthini, G. 2016. Antibacterial and antibiofilm assessment of Momordica charantia fruit extract coated silver nanoparticle. Biocatal. Agric. Biotechnol. 8, 189-196. https://doi.org/10.1016/j.bcab.2016.09.007
- Mie, G. 1908. Contribution to the optics of turbid media, particularly of colloidal metal solutions. Ann. Phys. 25, 377-445.
- Mirzajani, F., Ghassempour, A., Aliahmadi, A. and Esmaeili, M.A. 2011. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res. Microbiol. 162, 542-540. https://doi.org/10.1016/j.resmic.2011.04.009
- Moghimi, S. M., Hunter, A. C. and Murray, J. C. 2006. Nanomedicine: current status and future prospects. FASEB J. 19, 311-330.
- Nayak, R. R., Pradhan, N., Behera, D., Pradhan, K. M., Mishra, S., Sukla, L. B. and Mishraet, B. K. 2011. Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J. Nanopart. Res. 13, 3129-3137 https://doi.org/10.1007/s11051-010-0208-8
- Parikh, R. Y., Singh, S., Prasad, B. L. V., Patole, M. S., Sastry, M. and Shouche, Y. S. 2008. Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: Towards understanding biochemical synthesis mechanism. ChemBioChem 9, 1415-1422. https://doi.org/10.1002/cbic.200700592
- Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S. and Galdiero, M. 2014. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl. Microbiol. Biotechnol. 98, 1951-1961. https://doi.org/10.1007/s00253-013-5473-x
- Rai, M., Yadav, A. and Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
- Singh, S., Bharti, S. and Meena, V. K. 2014. Structural, thermal, zeta potential and electrical properties of disaccharide reduced silver nanoparticles. J. Mater. Sci. 25, 3747-3752.
- Sintubin, L., De Windt, W., Dick, J., Mast, J., van der Ha, D., Verstraete, W. and Boon, N. 2009. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl. Microbiol. Biotechnol. 84, 741-749. https://doi.org/10.1007/s00253-009-2032-6
- Sondi, I. and Salopek-Sondi, B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275, 177-182. https://doi.org/10.1016/j.jcis.2004.02.012
-
Thenmozhi, M., Kannabiran, K., Kumar, R. and Khanna, V. G. 2013. Antifungal activity of Streptomyces sp. VITSTK7 and its synthesized
$Ag_2O/Ag$ nanoparticles against medically important Aspergillus pathogens. J. Mycol. Med. 23, 97-103. https://doi.org/10.1016/j.mycmed.2013.04.005 - Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z. and Chen, G. 2015. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov. Today 20, 595-601. https://doi.org/10.1016/j.drudis.2014.11.014