Fig. 1. Comparison for strength of GAL10 promoter and ADH1 promoter in SEY2102△trp1/pAMF-Xylp and SEY2102△ trp1/pGMF-Xylp, SEY2102△trp1/pAMF-XylB and SEY 2102△trp1/pGMF-XylB, SEY2102△trp1/pAMF-Gre3 and SEY2102△trp1/pGMF-Gre3, SEY2102△trp1/pAMF-Xyl2 and SEY2102△trp1/pGMF-Xyl2 transformants, respectively.
Fig. 2. Schematic of the R-YIps; pRS-XylP, pRSXylB, pRS-Gre3 and pRS-Xyl2 plasmid (A) and procedure for repeated integration of foreign genes expression cassette by Cre/loxP system (B). CgTRP1 : TRP1 gene of C. glabrata, loxP : ATAACTTCGT ATAATGTATGCTATACGAAGTTAT (for sequential integration).
Fig. 3. Confirmation of integration position of each gene by PFGE and Southern hybridization. PMT6, XYLP, XYLB, GRE3 and XYL2 genes were used as probe. Lane 1; SEY2102△trp (Host strain), lane 2; 2102△trp/pRS-XylP (P), lane 3; SEY2102△ trp/pRS-XylP, pRS-XylB (PB), lane 4; SEY2102△trp/pRS-XylP, pRS-XylB, pRS-Gre3 (PBG), lane 5; SEY2102△trp/pRS-XylP, pRS-XylB, pRS-Gre3, pRS-Xyl2 (PBG2) transformant
Table 1. Plasmids list used in this study
Table 2. Oligonucleotides list used in this study
Table 3. Comparison of cell growth, endoxylanase, β-xylosidase, xylose reductase (XR) and xylitol dehydrogenase (XDH) activity in each transformant. Each transformant was cultivated in YPDG medium for 48 hr
참고문헌
- Bradford, M. M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
-
Chun, Y. C., Jung, K. H., Lee, J. C., Park, S. H., Chung, H. K. and Yoon, K. H. 1998. Molecular cloning and the nucleotide sequence of a Bacillus sp. KK-1
${\beta}$ -xylosidase gene. J. Microbiol. Biotechnol. 8, 28-33. - Eliasson, A., Christensson, C., Wahlbom, C. F. and Hahn-Hagerdal, B. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66, 3381-3386. https://doi.org/10.1128/AEM.66.8.3381-3386.2000
- Gietz, R. D. and Schiestl, R. H. 1995. Transforming yeast with DNA. Methods Mol. Cell. Biol. 5, 225-269.
- Guldener, U., Heck, S., Fiedler, T., Beinhauer, J. and Hegemann, J. H. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24, 2519-2524. https://doi.org/10.1093/nar/24.13.2519
- Kim, M. J., Kim, B. H., Nam, S. W., Choi, E. S., Shin, D. H., Cho, H. Y., Son, K. H., Park, H. Y. and Kim, Y. H. 2013. Efficient secretory expression of recombinant endoxylanase from Bacillus sp. HY-20 in Saccharomyces cerevisiae. J. Life Sci. 23, 863-868. https://doi.org/10.5352/JLS.2013.23.7.863
-
Kim, M. J., Nam, S. W., Tamano, K., Machida, M., Kim, S. K. and Kim, Y. H. 2011. Optimization for production of exo-
${\beta}$ -1,3-glucanase (laminarinase) from Aspergillus oryzae in Saccharomyces cerevisiae. Kor. J. Microbiol. Biotechnol. 26, 427-432. - Kim, S. R., Kwee, N. R., Kim, B. and Jin, Y. S. 2013. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulose kinase (XYL3) from Scheffersomyces stipitis. FEMS. Yeast Res. 13, 312-321. https://doi.org/10.1111/1567-1364.12036
- Kim, Y. H., Ishikawa, D., Ha, H. P., Sugiyama, M., Kaneko, Y. and Harashima, S. 2006. Chromosome XII context is important for rDNA function in yeast. Nucleic Acids Res. 34, 2914-2924. https://doi.org/10.1093/nar/gkl293
- Kim, Y. H., Sugiyama, M., Yamagishi, K., Kaneko, Y., Fukui, K., Kobayashi, A. and Harashima, S. 2005. A versatile and general splitting technology for generating targeted YAC subclones. Appl. Microbiol. Biotechnol. 69, 65-70. https://doi.org/10.1007/s00253-005-1970-x
- Lee, F. W. and Da Silva, N. A. 1997. Sequential delta-integration for the regulated insertion of cloned genes in Saccharomyces cerevisiae. Biotechnol. Prog. 13, 368-373. https://doi.org/10.1021/bp970055d
- Lee, L. H., Kim, D. Y., Han, M. K., Oh, H. W., Ham, S. J., Park, D. S., Bae, K. S., Sok, D. E., Shin, D. H., Son, K. H. and Park, H. Y. 2009. Characterization of an extracellular xylanase from Bacillus sp. HY-20, a bacterium in the gut of Apis mellifera. Kor. J. Microbiol. 45, 332-338.
- Lim, M. Y., Lee, J. W., Lee, J. H., Kim, Y. H., Seo, J. H. and Nam, S. W. 2007. Secretory overexpression of clostridium endoglucanase A in Saccharomyces cerevisiae using GAL10 promoter and exoinulinase signal sequence. J. Life Sci. 17, 1248-1254. https://doi.org/10.5352/JLS.2007.17.9.1248
- Murray, A. W. and Szostak, J. W. 1983. Pedigree analysis of plasmid segregation in yeast. Cell 34, 961-970. https://doi.org/10.1016/0092-8674(83)90553-6
- Romanos, M. A., Scorer, C. A. and Clare, J. J. 1992. Foreign gene expression in yeast: a review. Yeast 8, 423-488. https://doi.org/10.1002/yea.320080602
- Sheehan, C. and Weiss, A. S. 1990. Yeast artificial chromosomes: rapid extraction for high resolution analysis. Nucleic Acids Res. 18, 2193. https://doi.org/10.1093/nar/18.8.2193
- Sugiyama, M., Ikushima, S., Nakazawa, T., Kaneko, Y. and Harashima, S. 2005. PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae. BioTechniques 38, 909-914. https://doi.org/10.2144/05386RR01
- Sugiyama, M., Nishizawa, M., Hayashi, K., Kaneko, Y., Fukui, K., Kobayashi, A. and Harashima, S. 2003. Repeated chromosome splitting targeted to delta sequences in Saccharomyces cerevisiae. J. Biosci. Bioeng. 96, 397-400. https://doi.org/10.1016/S1389-1723(03)90144-7
- Zhang, J., Tian, S., Zhang, Y. and Yang, X. 2008. Construction of a recombinant S. cerevisiae expressing a fusion protein and study on the effect of converting xylose and glucose to ethanol. Appl. Biochem. Biotechnol. 150, 185-192. https://doi.org/10.1007/s12010-008-8203-6