DOI QR코드

DOI QR Code

Increased Apoptotic Efficacy of Decitabine in Combination with an NF-kappaB Inhibitor in Human Gastric Cancer AGS Cells

핵산합성 억제제인 decitabine과 NF-κB 활성 저해제인 PDTC의 병용 처리에 의한 인체 위암세포사멸 효과 증진

  • Choe, Won Kyung (Department of Sports Rehabilitation, Gimcheon University) ;
  • Choi, Yung Hyun (Department of Biochemistry, Dongeui University College of Korean Medicine)
  • 최원경 (김천대학교 스포츠재활학과) ;
  • 최영현 (동의대학교 한의과대학 생화학교실)
  • Received : 2018.07.30
  • Accepted : 2018.10.31
  • Published : 2018.11.30

Abstract

The cytidine analog decitabine (DEC) acts as a nucleic acid synthesis inhibitor, whereas ammonium pyrrolidine dithiocarbamate (PDTC) is an inhibitor of nuclear factor-${\kappa}B$. The aim of this study was to investigate the possible synergistic inhibitory effect of these two inhibitors on proliferation of human gastric cancer AGS cells. The inhibitory effect of PDTC on AGS cell proliferation was significantly increased by DEC in a concentration-dependent manner, and this inhibition was associated with cell cycle arrest at the G2/M phase and the induction of apoptosis. This induction of apoptosis by the co-treatment with PDTC and DEC was related to the induction of DNA damage, as assessed by H2AX phosphorylation. Further studies demonstrated that co-treatment with PDTC and DEC induced the disruption of mitochondrial membrane potential, increased the generation of intracellular reactive oxygen species (ROS) and the expression of pro-apoptotic Bax, and down-regulated the expression of anti-apoptotic Bcl-2, ultimately resulting in the release of cytochrome c from the mitochondria into the cytoplasm. Co-treatment with PDTC and DEC also activated caspase-8 and caspase-9, which are representative caspases of the extrinsic and intrinsic apoptosis pathways. Co-treatment also activated caspase-3, which was accompanied by proteolytic degradation of poly (ADP-ribose) polymerase. Taken together, these data clearly indicated that co-treatment with PDTC and DEC suppressed the proliferation of AGS cells by increasing DNA damage and activating the ROS-mediated extrinsic and intrinsic apoptosis pathways.

Cytidine analog decitabine (DEC)은 핵산 합성의 억제제로서 골수이형성 증후군 및 급성 골수성 백혈병 치료제로 사용되고 있다. 산화질소 합성에서 번역 단계를 억제하는 것으로 알려진 ammonium pyrrolidine dithiocarbamate (PDTC)는 $NF-{\kappa}B$의 대표적인 억제제이다. 본 연구에서는 인체 위암 AGS 세포를 대상으로 DEC와 PDTC의 병용 처리에 따른 세포증식 억제 기전을 조사하였다. 본 연구의 결과에 따르면 PDTC에 의한 AGS 세포의 증식 억제 효과는 DEC에 의해 농도 의존적으로 유의하게 증가하였으며, 이는 G2/M기의 세포주기 정지 및 apoptosis 유도와 관련이 있었다. PDTC와 DEC의 병용 처리에 의한 세포 사멸의 유도는 DNA 손상 유도와 관련이 있음을 H2AX의 인산화 증가로 확인하였다. 아울러 PDTC와 DEC의 병용 처리는 미토콘드리아 막 전위의 파괴를 유도하고, 세포 내 활성산소종(ROS)의 생성과 Bax의 발현을 향상시키고, Bcl-2 발현을 감소시켰으며 미토콘드리아에서 세포질로의 cytochrome c 유출을 증가시켰다. 또한 PDTC과 DEC의 병용 처리는 외인성 및 내인성 apoptosis 개시 caspase에 해당하는 caspase-8과 caspase-9의 활성뿐만 아니라 caspase-3의 활성화와 PARP 단백질의 분해를 유도하였다. 결론적으로 본 연구의 결과는 PDTC와 DEC의 병용 처리가 DNA 손상을 유발하고, ROS 증가와 연계된 외인성 및 내인성 apoptosis 사멸 경로를 활성화시킴으로써 AGS 세포의 증식을 억제하였음을 의미한다.

Keywords

SMGHBM_2018_v28n11_1268_f0001.png 이미지

Fig. 1. Inhibition of cell viability and induction of apoptosis by co-treatment with PDTC and DEC in AGS gastric cancer cells.

SMGHBM_2018_v28n11_1268_f0002.png 이미지

Fig. 2. Effects of PDTC and DEC on the cell cycle progression in AGS gastric cancer cells.

SMGHBM_2018_v28n11_1268_f0003.png 이미지

Fig. 3. Generation of ROS and induction of DNA damage by co-treatment with PDTC and DEC in AGS gastric cancer cells.

SMGHBM_2018_v28n11_1268_f0004.png 이미지

Fig. 4. Effects of combined treatment with PDTC and DEC on the MMP values and cytochrome c expression in AGS gastric cancer cells.

SMGHBM_2018_v28n11_1268_f0005.png 이미지

Fig. 5. Activation of caspases and degradation of PARP by combined treatment with PDTC and DEC in AGS MCF-7 gastric cancer cells.

SMGHBM_2018_v28n11_1268_f0006.png 이미지

Fig. 6. Effects of combined treatment with PDTC and DEC on the expression of apoptosis regulatory proteins in AGS gastric cancer cells.

Table 1. Antibodies used in the present study

SMGHBM_2018_v28n11_1268_t0001.png 이미지

References

  1. Appleton, K., Mackay, H. J., Judson, I., Plumb, J. A., McCormick, C., Strathdee, G., Lee, C., Barrett, S., Reade, S., Jadayel, D., Tang, A., Bellenger, K., Mackay, L., Setanoians, A., Schatzlein, A., Twelves, C., Kaye, S. B. and Brown, R. 2007. Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors. J. Clin. Oncol. 25, 4603-4609. https://doi.org/10.1200/JCO.2007.10.8688
  2. Arlt, A., Gehrz, A., Muerkoster, S., Vorndamm, J., Kruse, M. L., Folsch, U. R. and Schafer, H. 2003. Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22, 3243-3251. https://doi.org/10.1038/sj.onc.1206390
  3. Birch-Machin, M. A., Russell, E. V. and Latimer, J. A. 2013. Mitochondrial DNA damage as a biomarker for ultraviolet radiation exposure and oxidative stress. Br. J. Dermatol. 169, 9-14. https://doi.org/10.1111/bjd.12207
  4. Chaudhary, A. K., Yadav, N., Bhat, T. A., O'Malley, J., Kumar, S. and Chandra, D. 2016. A potential role of X-linked inhibitor of apoptosis protein in mitochondrial membrane permeabilization and its implication in cancer therapy. Drug Discov. Today 21, 38-47. https://doi.org/10.1016/j.drudis.2015.07.014
  5. Chen, D., Peng, F., Cui, Q. C., Daniel, K. G., Orlu, S., Liu, J. and Dou, Q. P. 2005. Inhibition of prostate cancer cellular proteasome activity by a pyrrolidine dithiocarbamate-copper complex is associated with suppression of proliferation and induction of apoptosis. Front. Biosci. 10, 2932-2939. https://doi.org/10.2741/1749
  6. Daskalakis, M., Blagitko-Dorfs, N. and Hackanson, B. 2010. Decitabine. Recent Results Cancer Res. 184, 131-157.
  7. Decker, P. and Muller, S. 2002. Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr. Pharm. Biotechnol. 3, 275-283. https://doi.org/10.2174/1389201023378265
  8. Di Nicuolo, F., Serini, S., Boninsegna, A., Palozza, P. and Calviello, G. 2001. Redox regulation of cell proliferation by pyrrolidine dithiocarbamate in murine thymoma cells transplanted in vivo. Free Radic. Biol. Med. 31, 1424-1431. https://doi.org/10.1016/S0891-5849(01)00714-6
  9. Dorstyn, L., Akey, C. W. and Kumar, S. 2018. New insights into apoptosome structure and function. Cell Death Differ. 25, 1194-1208. https://doi.org/10.1038/s41418-017-0025-z
  10. Farsinejad, S., Gheisary, Z., Ebrahimi Samani, S. and Alizadeh, A. M. 2015. Mitochondrial targeted peptides for cancer therapy. Tumour Biol. 36, 5715-5725. https://doi.org/10.1007/s13277-015-3719-1
  11. Fulda, S. and Debatin, K. M. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798-4811. https://doi.org/10.1038/sj.onc.1209608
  12. Gong, X. G., Lv, Y. F., Li, X. Q., Xu, F. G. and Ma, Q. Y. 2010. Gemcitabine resistance induced by interaction between alternatively spliced segment of tenascin-C and annexin A2 in pancreatic cancer cells. Biol. Pharm. Bull. 33, 1261-1267. https://doi.org/10.1248/bpb.33.1261
  13. Hajra, K. M. and Liu, J. R. 2004. Apoptosome dysfunction in human cancer. Apoptosis 9, 691-704. https://doi.org/10.1023/B:APPT.0000045786.98031.1d
  14. Hata, A. N., Engelman, J. A. and Faber, A. C. 2015. The BCL2 family: Key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 5, 475-487. https://doi.org/10.1158/2159-8290.CD-15-0011
  15. Hengartner, M. O. 2000. The biochemistry of apoptosis. Nature 407, 770-776. https://doi.org/10.1038/35037710
  16. Hu, Q., Sun, W., Wang, C. and Gu, Z. 2016. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv. Drug Deliv. Rev. 98, 19-34. https://doi.org/10.1016/j.addr.2015.10.022
  17. Iessi, E., Logozzi, M., Mizzoni, D., Di Raimo, R., Supuran, C. T. and Fais, S. 2017. Rethinking the combination of proton exchanger inhibitors in cancer therapy. Metabolites 8, E2. https://doi.org/10.3390/metabo8010002
  18. Janssens, S. and Tschopp, J. 2006. Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ. 13, 773-784. https://doi.org/10.1038/sj.cdd.4401843
  19. Kantari, C. and Walczak, H. 2011. Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim. Biophys. Acta. 1813, 558-563. https://doi.org/10.1016/j.bbamcr.2011.01.026
  20. Katsman, A., Umezawa, K. and Bonavida, B. 2009. Chemosensitization and immunosensitization of resistant cancer cells to apoptosis and inhibition of metastasis by the specific NF-kappaB inhibitor DHMEQ. Curr. Pharm. Des. 15, 792-808. https://doi.org/10.2174/138161209787582156
  21. Kaufmann, T., Strasser, A. and Jost, P. J. 2012. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ. 19, 42-50. https://doi.org/10.1038/cdd.2011.121
  22. Kroemer, G. and Pouyssegur, J. 2008. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472-482. https://doi.org/10.1016/j.ccr.2008.05.005
  23. Malaguarnera, L., Pilastro, M. R., Vicari, L., Dimarco, R., Manzella, L., Palumbo, G. and Messina, A. 2005. Pyrrolidinedithiocarbamate induces apoptosis in human acute myelogenous leukemic cells affecting NF-kappaB activity. Cancer Invest. 23, 404-412. https://doi.org/10.1081/CNV-67147
  24. Mohamed, M. S., Bishr, M. K., Almutairi, F. M. and Ali, A. G. 2017. Inhibitors of apoptosis: Clinical implications in cancer. Apoptosis 22, 1487-1509. https://doi.org/10.1007/s10495-017-1429-4
  25. Moloney, J. N. and Cotter, T. G. 2018. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 80, 50-64. https://doi.org/10.1016/j.semcdb.2017.05.023
  26. Nakajima, K., Nangia-Makker, P., Hogan, V. and Raz, A. 2017. Cancer self-defense: An immune stealth. Cancer Res. 77, 5441-5444. https://doi.org/10.1158/0008-5472.CAN-17-1324
  27. Nguyen, D. P., Li, J., Yadav, S. S. and Tewari, A. K. 2014. Recent insights into NF-${\kappa}B$ signalling pathways and the link between inflammation and prostate cancer. BJU Int. 114, 168-176. https://doi.org/10.1111/bju.12488
  28. Nguyen, H. S., Shabani, S., Awad, A. J., Kaushal, M. and Doan, N. 2018. Molecular markers of therapy-resistant glioblastoma and potential strategy to combat resistance. Int. J. Mol. Sci. 19, E1765. https://doi.org/10.3390/ijms19061765
  29. Pelicano, H., Carney, D. and Huang, P. 2004. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 7, 97-110. https://doi.org/10.1016/j.drup.2004.01.004
  30. Ranganathan, P., Yu, X., Santhanam, R., Hofstetter, J., Walker, A., Walsh, K., Bhatnagar, B., Klisovic, R., Vasu, S., Phelps, M. A., Devine, S., Shacham, S., Kauffman, M., Marcucci, G., Blum, W. and Garzon, R. 2015. Decitabine priming enhances the antileukemic effects of exportin 1 (XPO1) selective inhibitor selinexor in acute myeloid leukemia. Blood 125, 2689-2692. https://doi.org/10.1182/blood-2014-10-607648
  31. Reubold, T. F. and Eschenburg, S. 2012. A molecular view on signal transduction by the apoptosome. Cell Signal. 24, 1420-1425. https://doi.org/10.1016/j.cellsig.2012.03.007
  32. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. and Bonner, W. M. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858-5868. https://doi.org/10.1074/jbc.273.10.5858
  33. Rybak, P., Hoang, A., Bujnowicz, L., Bernas, T., Berniak, K., Zarebski, M., Darzynkiewicz, Z. and Dobrucki, J. 2016. Low level phosphorylation of histone H2AX on serine 139 (${\gamma}$ H2AX) is not associated with DNA double-strand breaks. Oncotarget 7, 49574-49587.
  34. Shao, L., Wu, L. and Zhou, D. 2012. Sensitization of tumor cells to cancer therapy by molecularly targeted inhibition of the inhibitor of nuclear factor ${\kappa}B$ kinase. Transl. Cancer Res. 1, 100-108.
  35. Stresemann, C. and Lyko, F. 2008. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer 123, 8-13. https://doi.org/10.1002/ijc.23607
  36. Ta, M. H., Liuwantara, D. and Rangan, G. K. 2015. Effects of pyrrolidine dithiocarbamate on proliferation and nuclear factor-${\kappa}B$ activity in autosomal dominant polycystic kidney disease cells. BMC Nephrol. 16, 212. https://doi.org/10.1186/s12882-015-0193-3
  37. Tummers, B. and Green, D. R. 2017. Caspase-8: regulating life and death. Immunol. Rev. 277, 76-89. https://doi.org/10.1111/imr.12541
  38. Wadhwa, S. and Mumper, R. J. 2013. D-penicillamine and other low molecular weight thiols: review of anticancer effects and related mechanisms. Cancer Lett. 337, 8-21. https://doi.org/10.1016/j.canlet.2013.05.027
  39. Wijermans, P. W., Ruter, B., Baer, M. R., Slack, J. L., Saba, H. I. and Lubbert, M. 2008. Efficacy of decitabine in the treatment of patients with chronic myelomonocytic leukemia (CMML). Leuk. Res. 32, 587-591. https://doi.org/10.1016/j.leukres.2007.08.004
  40. Zhang, L., Li, J., Zong, L., Chen, X., Chen, K., Jiang, Z., Nan, L., Li, X., Li, W., Shan, T., Ma, Q. and Ma, Z. 2016. Reactive oxygen species and targeted therapy for pancreatic cancer. Oxid. Med. Cell. Longev. 2016, 1616781.
  41. Zhang, X. Y. and Zhang, P. Y. 2016. Combinations in multimodality treatments and clinical outcomes during cancer. Oncol. Lett. 12, 4301-4304. https://doi.org/10.3892/ol.2016.5242