DOI QR코드

DOI QR Code

Spatial Distribution Patterns of Oplismenus undulatifolius var. undulatifolius on Mt. Hanwoo in Korea

한우산에 분포하는 주름조개풀의 공간적 양상

  • Huh, Man Kyu (Division of Applied Bioengineering, Dong-eui University)
  • 허만규 (동의대학교 바이오응용공학부)
  • Received : 2018.07.04
  • Accepted : 2018.11.17
  • Published : 2018.11.30

Abstract

The patchiness of local environments within a habitat is assumed to be a primary factor affecting the spatial patterns of plants. In this study, a randomization procedure was developed to test the null hypothesis that only spatial association with patches determines the spatial patterns of plants. Oplismenus undulatifolius (Ard.) P. Beauv. var. undulatifolius is an herbaceous plant and a member of the genus Oplismenus in the family Poaceae. Oplismenus hirtellus subsp. undulatifolius occurs in temperate, subtropical, and tropical areas of the world. The spatial pattern of O. undulatifolius var. undulatifolius was analyzed using dispersion indices in different sizes of plots according to several patchiness indexes, population uniformity, or aggregation. Population densities (D) at Mt. Hanwoo varied from 0.453 to 4.375, with a mean of 2.387. The small and mid-sized plots ($2m{\times}2m$, $2m{\times}4m$, $4m{\times}4m$, $4m{\times}8m$, and $8m{\times}8m$) of O. undulatifolius var. undulatifolius were aggregated in the forest community. However, O. undulatifolius var. undulatifolius was uniformly distributed in three large plots ($8m{\times}16m$, $16m{\times}16m$, and $16m{\times}32m$). The greatest mean crowding ($M^*$) and patchiness index (PAI) showed positive values. Aggregation is mainly caused by environmental factors. Many plants on Mt. Hanwoo are being disturbed by climbers, which is preventing these plants from inhabiting their realized niches on Mt. Hanwoo.

국지적 환경에서 패치 분포 형태는 일차적으로 식물의 공간적 양상으로 나타나고, 임의화 과정은 패치를 결정하는 공간적 가설을 입증하는데 이용된다. 주름조개풀(Oplismenus undulatifolius (Ard.) P. Beauv. var. undulatifolius)은 Poaceae과 Oplismenus 속에 속하는 초본류이다. 이 종은 온대, 아열대, 열대에 분포한다. 이 지역의 주름조개풀이 일정한 분포인지 응집하는 분포인지 여러 패치 지표를 사용하여 분석하였다. 한우산의 집단 밀도는 0.453에서 4.375였으며 평균은 2.387이였다. 소형과 중형 프롯($2m{\times}2m$, $2m{\times}4m$, $4m{\times}4m$, $4m{\times}8m$, and $8m{\times}8m$)에서 주름조개풀은 응집형태를 보였다. 반면에 대형 플롯($8m{\times}16m$, $16m{\times}16m$, and $16m{\times}32m$)에서는 일정한 분포 양상을 나타내었다. 평균 응집 계수(M*)와 패치 지표(PAI)는 양의 값을 보였다. 응집은 여러 환경적 요인에 기인하는데 등산객들에 의해 방해되고 있었다. 따라서 주름조개풀은 이 지역에서 본래의 기본 생태적 지위를 누리지 못하고 있음을 보여주었다.

Keywords

SMGHBM_2018_v28n11_1262_f0001.png 이미지

Fig. 1. The curves of the patchiness index. Plot A (―): D ≥ 10 individuals/m2; Plot B (⋯): 10 individuals/m2 > D ≥ 5 individuals/m2; Plot C (— - —): D < 5 individuals/m2. D represents the average density of Oplismenus undulatifolius var. undulatifolius in plots.

SMGHBM_2018_v28n11_1262_f0002.png 이미지

Fig. 2. The mean aggregation number to find the reason for the aggregation of Oplismenus undulatifolius var. undulatifolius.

Table 1. Spatial patterns of Oplismenus undulatifolius var. undulatifolius individuals at different sampling quadrat sizes in Mt. Hanwoo

SMGHBM_2018_v28n11_1262_t0001.png 이미지

Table 2. Changes in gathering strength of O. undulatifolius var. undulatifolius at different sampling quadrat sizes

SMGHBM_2018_v28n11_1262_t0002.png 이미지

References

  1. Arbous, A. G. and Kerrich, J. E. 1951. Accident statistics and the concept of accident proneness. Biometrics 7, 340-342. https://doi.org/10.2307/3001656
  2. Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343-366. https://doi.org/10.1146/annurev.ecolsys.31.1.343
  3. Clark, P. J. and Evans, F. C. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445-453. https://doi.org/10.2307/1931034
  4. Eberhardt, W. R. and Eberhardt, L. 1967. Estimating cottontail abundance from livertrapping data. J. Wildl. Manage. 31, 87-96. https://doi.org/10.2307/3798362
  5. Ferreira, J. N., Bustamante, M., Garcia-Montiel, D., Caylor, K. K. and Davidson, E. 2007. Spatial variation in vegetation structure coupled to plant available water determined by two-dimensional soil resistivity profiling in a Brazilian savanna. Oecologia 153, 417-430. https://doi.org/10.1007/s00442-007-0747-6
  6. Green, R. H. 1966. Measurement of non-randomness in spatial distributions. Res. Pop. Ecol. 8, 1-7. https://doi.org/10.1007/BF02524740
  7. Hines, W. G. S. and Hines, R. J. O. 1979. The Eberhardt index and the detection of non-randomness of spatial point distributions. Biometrika 66, 73-80. https://doi.org/10.1093/biomet/66.1.73
  8. Horvitz, C. C. and Schemske, D. W. 1986. Seed dispersal and environmental heterogeneity in a neotropical herb: a model of population and patch dynamics. In: Estrada A, Fleming TH, eds. Frugivores and seed dispersal. Dordrecht: Dr W. Junk Publishers, 169-186.
  9. Houle, G. 1998. Seed dispersal and seedling recruitment of Betula alleghaniensis: spatial inconsistency in time. Ecology 79, 807-818. https://doi.org/10.1890/0012-9658(1998)079[0807:SDASRO]2.0.CO;2
  10. Huh, M. K. 2016. Spatial distribution pattern of the populations of Oplismenus undulatifolius var. undulatifolius at Mt. Ahop. Eur. J. Adv. Res. Biol. Life Sci. 4, 52-55.
  11. Lian, X., Jiang, Z., Ping, X., Tang, S., Bi, J. and Li, C. 2012. Spatial distribution pattern of the steppe toad-headed lizard (Phrynocephalus frontalis) and its influencing factors. Asian Herpet. Res. 3, 46-51. https://doi.org/10.3724/SP.J.1245.2012.00046
  12. Lloyd, M. 1967. Mean crowding. J. Anim. Ecol. 36, 1-30. https://doi.org/10.2307/3012
  13. Pommerening, A. 2008. Analysing and modeling spatial woodland structure. D.Sc. dissertation. University of Natural Resources and Applied Sciences, Vienna, Austria.
  14. Rojas-Sandoval, J. and Melendez-Ackerman, E. J. 2013. Spatial patterns of distribution and abundance of Harrisia portoricensis, an endangered Caribbean cactus. J. Plant Ecol. 6, 489-498. https://doi.org/10.1093/jpe/rtt014
  15. Scholz, U. 1981. Monographia der Gattung Oplismenus (Gramineae). Phanerogamarum Monographiae 13, 1-213.
  16. Silvertown, J. 2004. Plant coexistence and the niche. TRENDS Ecol. Evol. 19, 605-611. https://doi.org/10.1016/j.tree.2004.09.003
  17. Suzuki, R. O., Suzuki, J. I. and Kachi, N. 2005. Change in spatial distribution patterns of a Biennial plant between growth stages and generations in a patchy habitat. Ann. Bot. 96, 1009-1017. https://doi.org/10.1093/aob/mci253
  18. United States Department of Agriculture. 2012. Weed Risk Assessment for Oplismenus hirtellus (L.) P. Beauv. subsp. undulatifolius (Ard.) U. Scholz (Poaceae)-Wavy leaf basket grass. Animal and Plant Health Inspection Service.
  19. Watkinson, A. R., Feckleton, R. P. and Forrester, L. 2000. Population dynamics of Vulpia ciliata: regional, patch and local dynamics. J. Ecol. 88, 1012-1029. https://doi.org/10.1046/j.1365-2745.2000.00507.x