Fig. 1. Line plot showing the accuracy of imputation for each chromosome using Minimac3 & Beagle. X axis is chromosome number, Y axis is imputation accuracy.
Fig. 2. Bar plot showing the accuracy of imputation of 50 Hanwoo bulls that were genotyped from both whole genome sequence data and 777K SNP chip data. X axis is percentage of accuracy, Y axis is number of animals.
Fig. 3. Effect of chromosome size on imputation accuracy calculated through analyzing the correlation (R2) between chromosome size & accuracy of imputation. X axis is chromosome number, Y axis is R2.
Fig. 4. Effect of MAF (Minor Allele Frequency) on imputation accuracy calculated through analyzing the correlation (R2) between MAF & accuracy of imputation. X axis is MAF, Y axis is R2.
Table 1. Number of Single Nucleotide Polymorphism (SNP) in 770K chip-seq and Next Generation Sequencing (NGS)
Table 2. Accuracy (in %) of the imputed SNPs with Minimac3 & Beagle
Table 3. Chromosome wise average accuracy (in %) using Minimac3 & Beagle
Table 4. Chromosome wise time taken by Minimac3 for imputation
References
- Browning, B. L. and Browning, S. R. 2009. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84, 210-223. https://doi.org/10.1016/j.ajhg.2009.01.005
- Browning, B. L. and Browning, S. R. 2013. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194, 459-471. https://doi.org/10.1534/genetics.113.150029
- Browning, B. L. and Browning, S. R. 2016. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116-126. https://doi.org/10.1016/j.ajhg.2015.11.020
- Browning, S. R. and Browning, B. L. 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084-1097. https://doi.org/10.1086/521987
- Chud, T. C., Ventura, R. V., Schenkel, F. S., Carvalheiro, R., Buzanskas, M. E., Rosa, J. O., de Alvarenga Mudadu, M., da Silva, M. V. G., Mokry, F. B. and Marcondes, C. R. 2015. Strategies for genotype imputation in composite beef cattle. BMC Genet. 16, 99.
- Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T. and Sherry, S. T. 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158. https://doi.org/10.1093/bioinformatics/btr330
- Das, S., Forer, L., Schonherr, S., Sidore, C., Locke, A. E., Kwong, A., Vrieze, S. I., Chew, E. Y., Levy, S., McGue, M., Schlessinger, D., Stambolian, D., Loh, P. R., Iacono, W. G., Swaroop, A., Scott, L. J., Cucca, F., Kronenberg, F., Boehnke, M., Abecasis, G. R. and Fuchsberger, C. 2016. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284-1287. https://doi.org/10.1038/ng.3656
- Druet, T., Schrooten, C. and De Roos, A. P. W. 2010. Imputation of genotypes from different single nucleotide polymorphism panels in dairy cattle. J. Dairy Sci. 93, 5443-5454. https://doi.org/10.3168/jds.2010-3255
- Ellinghaus, D., Schreiber, S., Franke, A. and Nothnagel, M. 2009. Current software for genotype imputation. Hum. Genomics 3, 371.
- Hayes, B. J., Bowman, P. J., Daetwyler, H. D., Kijas, J. W. and Van der Werf, J. H. J. 2012. Accuracy of genotype imputation in sheep breeds. Anim. Genet. 43, 72-80.
- Hickey, J. M., Kinghorn, B. P., Tier, B., Wilson, J. F., Dunstan, N. and Van der Werf, J. H. J. 2011. A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes. Genet. Sel. Evol. 43, 12. https://doi.org/10.1186/1297-9686-43-12
- Hickey, J. M., Crossa, J., Babu, R. and de los Campos, G. 2012. Factors affecting the accuracy of genotype imputation in populations from several maize breeding programs. Crop Sci. 52, 654-663. https://doi.org/10.2135/cropsci2011.07.0358
- Howie, B. N., Donnelly, P. and Marchini, J. 2009. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529. https://doi.org/10.1371/journal.pgen.1000529
- Iwata, H. and Jannink, J. L. 2010. Marker genotype imputation in a low-marker-density panel with a high-marker-density reference panel: accuracy evaluation in barley breeding lines. Crop Sci. 50, 1269-1278. https://doi.org/10.2135/cropsci2009.08.0434
- Johnston, J., Kistemaker, G. and Sullivan, P. G. 2011. Comparison of different imputation methods. Interbull Bulletin. pp. 25-33. Stavanger, Norway.
- Li, L., Li, Y., Browning, S. R., Browning, B. L., Slater, A. J., Kong, X., Aponte, J. L., Mooser, V. E., Chissoe, S. L., Whittaker, J. C., Nelson, M. R. and Ehm, M. G. 2011. Performance of genotype imputation for rare variants identified in exons and flanking regions of genes. PLoS One 6, e24945. https://doi.org/10.1371/journal.pone.0024945
- Li, Y., Willer, C., Sanna, S. and Abecasis, G. 2009. Genotype imputation. Annu. Rev. Genomics Hum. Genet. 10, 387-406. https://doi.org/10.1146/annurev.genom.9.081307.164242
- Loh, P. -R., Danecek, P., Palamara, P. F., Fuchsberger, C., A Reshef, Y., K Finucane, H., Schoenherr, S., Forer, L., McCarthy, S., Abecasis, G. R., Durbin, R. and L Price, A. 2016. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443-1448. https://doi.org/10.1038/ng.3679
- Lopes, F. B., Wu, X. L., Li, H., Xu, J., Perkins, T., Genho, J., Ferretti, R., Tait Jr, R. G., Bauck, S. and Rosa, G. J. M. 2018. Improving accuracy of genomic prediction in Brangus cattle by adding animals with imputed low density SNP genotypes. J. Anim. Breed. Genet. 135, 14-27. https://doi.org/10.1111/jbg.12312
- Marchini, J. and Howie, B. 2010. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499-511. https://doi.org/10.1038/nrg2796
- Meuwissen, T. H. E., Hayes, B. J. and Goddard, M. E. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819-1829.
- Ni, G., Cavero, D., Fangmann, A., Erbe, M. and Simianer, H. 2017. Whole-genome sequence-based genomic prediction in laying chickens with different genomic relationship matrices to account for genetic architecture. Genet. Sel. Evol. 49, 8. https://doi.org/10.1186/s12711-016-0277-y
- Ogawa, S., Matsuda, H., Taniguchi, Y., Watanabe, T., Takasuga, A., Sugimoto, Y. and Iwaisaki, H. 2016. Accuracy of imputation of single nucleotide polymorphism marker genotypes from low-density panels in Japanese Black cattle. Anim. Sci. J. 87, 3-12. https://doi.org/10.1111/asj.12393
- Sargolzaei, M., Chesnais, J. P. and Schenkel, F. S. 2011. FImpute-An efficient imputation algorithm for dairy cattle populations. J. Dairy Sci. 94, 421.
- Sargolzaei, M., Chesnais, J. P. and Schenkel, F. S. 2014. A new approach for efficient genotype imputation using information from relatives. BMC Genomics 15, 478. https://doi.org/10.1186/1471-2164-15-478
- Scheet, P. and Stephens, M. 2006. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 78, 629-644. https://doi.org/10.1086/502802
- Sun, C., Wu, X. L., Weigel, K. A., Rosa, G. J. M., Bauck, S., Woodward, B. W., Schnabel, R. D., Taylor, J. F. and Gianola, D. 2012. An ensemble-based approach to imputation of moderate-density genotypes for genomic selection with application to Angus cattle. Genet. Res. 94, 133-150. https://doi.org/10.1017/S001667231200033X
- Uemoto, Y., Sasaki, S., Sugimoto, Y. and Watanabe, T. 2015. Accuracy of high-density genotype imputation in Japanese Black cattle. Anim. Genet. 46, 388-394. https://doi.org/10.1111/age.12314
- VanRaden, P. M., Null, D. J., Sargolzaei, M., Wiggans, G. R., Tooker, M. E., Cole, J. B., Sonstegard, T. S., Connor, E. E., Winters, M., Van Kaam, J. B., Valentini, A., Van Doormaal, B. J., Faust, M. A. and Doak, G. A. 2013. Genomic imputation and evaluation using high-density Holstein genotypes. J. Dairy Sci. 96, 668-678. https://doi.org/10.3168/jds.2012-5702
- VanRaden, P. M., O'Connell, J. R., Wiggans, G. R. and Weigel, K. A. 2011. Genomic evaluations with many more genotypes. Genet. Sel. Evol. 43, 10. https://doi.org/10.1186/1297-9686-43-10