DOI QR코드

DOI QR Code

Enhanced Self-Cleaning Performance of Ag-F-Codoped TiO2/SiO2 Thin Films

  • Kim, Byeong-Min (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Jung-Sik (Department of Materials Science and Engineering, University of Seoul)
  • Received : 2018.10.02
  • Accepted : 2018.10.23
  • Published : 2018.11.27

Abstract

Highly self-cleaning thin films of $TiO_2-SiO_2$ co-doped with Ag and F are prepared by the sol-gel method. The asprepared thin films consist of bottom $SiO_2$ and top $TiO_2$ layers which are modified by doping with F, Ag and F-Ag elements. XRD analysis confirms that the prepared thin film is a crystalline anatase phase. UV-vis spectra show that the light absorption of $Ag-F-TiO_2/SiO_2$ thin films is tuned in the visible region. The self-cleaning properties of the prepared films are evaluated by a water contact angle measurement under UV light irradiation. The photocatalytic performances of the thin films are studied using methylene blue dye under both UV and visible light irradiation. The $Ag-F-TiO_2/SiO_2$ thin films exhibit higher photocatalytic activity under both UV and visible light compared with other samples of pure $TiO_2$, Ag-doped $TiO_2$, and F-doped $TiO_2$ films.

Keywords

References

  1. S. Banerjee, D. D. Dionysiou and S. C. Pillai, Appl. Catal. B Environ. 176-177, 396 (2015). https://doi.org/10.1016/j.apcatb.2015.03.058
  2. H. M. Yadav, J.-S. Kim and S. H. Pawar, Korean J. Chem. Eng., 33, 1989 (2016). https://doi.org/10.1007/s11814-016-0118-2
  3. W.-J. Lee, Y.-B. Choi and D.-S. Bae, Korean J. Mater. Res., 27, 289 (2017). https://doi.org/10.3740/MRSK.2017.27.5.289
  4. L. Zhou, S. Yan, B. Tian, J. Zhang and M. Anpo, Mater. Lett., 60, 396 (2006). https://doi.org/10.1016/j.matlet.2005.08.065
  5. H. M. Yadav, T. V. Kolekar, S. H. Pawar and J.-S. Kim, J. Mater. Sci.: Mater. Med. 27: 57, 1 (2016). https://doi.org/10.1007/s10856-016-5675-8
  6. M. Houmard, G. Berthome, J. C. Joud and M. Langlet, Surf. Sci., 605, 456 (2011). https://doi.org/10.1016/j.susc.2010.11.017
  7. X. Lin, F. Rong, D. Fu and C. Yuan, Powder Technol., 219, 173 (2012). https://doi.org/10.1016/j.powtec.2011.12.037
  8. B.-M. Kim and J.-S. Kim, Korean J. Mater. Res., 26, 73 (2016). https://doi.org/10.3740/MRSK.2016.26.2.73
  9. E. Albiter, M. A. Valenzuela, S. Alfaro, G. Valverde-Aguilar and F. M. Martinez-Pallares, J. Saudi Chem. Soc., 19, 563 (2015). https://doi.org/10.1016/j.jscs.2015.05.009
  10. A. M. Asiri, M. S. Al-Amoudi, S. A. Bazaid, A. A. Adam, K. A. Alamry and S. Anandan, J. Saudi Chem. Soc., 18, 155 (2014). https://doi.org/10.1016/j.jscs.2011.06.008
  11. J. C. Yu, J. Yu, W. Ho, Z. Jiang and L. Zhang, Chem. Mater., 14, 3808 (2002). https://doi.org/10.1021/cm020027c
  12. D. Li, H. Haneda, N. K. Labhsetwar, S. Hishita and N. Ohashi, Chem. Phys. Lett., 401, 579 (2005). https://doi.org/10.1016/j.cplett.2004.11.126
  13. D. Li, H. Haneda, S. Hishita, N. Ohashi and N. K. Labhsetwar, J. Fluor. Chem., 126, 69 (2005). https://doi.org/10.1016/j.jfluchem.2004.10.044
  14. D. J. R. Gutierrez, N. R. Mathews and S. S. Martinez, J. Photochem. Photobiol. A: Chem., 262, 57 (2013). https://doi.org/10.1016/j.jphotochem.2013.04.021
  15. J. Xu, Y. Ao, D. Fu and C. Yuan, Appl. Surf. Sci., 254, 3033 (2008). https://doi.org/10.1016/j.apsusc.2007.10.065
  16. B.-M. Kim, H. M. Yadav, J.-S. Kim, J. Coat. Technol. Res., 13, 905 (2016). https://doi.org/10.1007/s11998-016-9804-6
  17. S. C. Chan and M. A. Barteau, Top. Catal., 54, 378 (2011). https://doi.org/10.1007/s11244-011-9666-1
  18. I. Pastoriza-Santos and L. M. Liz-Marzan, Nano Lett., 2, 903 (2002). https://doi.org/10.1021/nl025638i
  19. S. P. Deshmukh, R. K. Dhokale, H. M. Yadav, S. N. Achary, S. D. Delekar, Appl. Surf. Sci., 273, 676 (2013). https://doi.org/10.1016/j.apsusc.2013.02.110
  20. T. Yamaki, T. Umebayashi, T. Sumita, S. Yamamoto, M. Maekawa, A. Kawasuso and H. Itoh, Nucl. Instrum. Methods Phys. Res., Sect. B, 206, 254 (2003). https://doi.org/10.1016/S0168-583X(03)00735-3
  21. D. K. Kim and W. Y. Maeng, Korean J. Mater. Res., 26, 271 (2016). https://doi.org/10.3740/MRSK.2016.26.5.271
  22. X. Yang, Y. Wang, L. Xu, X. Yu and Y. Guo, J. Phys. Chem. C, 112, 11481 (2008).
  23. C. Trapalis, N. Todorova, T. Giannakopoulou, G. Romanos, T. Vaimakis and J. Yu, Int. J. Photoenergy, 2008, 534038 (2008).
  24. H. M. Sung-Suh, J. R. Choi, H. J. Hah, S. M. Koo and Y. C. Bae, J. Photochem. Photobiol. A: Chem., 163, 37 (2004). https://doi.org/10.1016/S1010-6030(03)00428-3
  25. X. Lin, F. Rong, D. Fu and C. Yuan, Powder Technol., 219, 173 (2012). https://doi.org/10.1016/j.powtec.2011.12.037
  26. M. Jakob, H. Levanon and P. V. Kamat, Nano Lett., 3, 353 (2003). https://doi.org/10.1021/nl0340071
  27. Y. Wu, H. Liu, J. Zhang and F. Chen, J. Phys. Chem. C, 113, 14689 (2009).
  28. S. N. Subbarao, Y. H. Yun, R. Kershaw and K. Dwight, Inorg. Chem., 18, 488 (1979). https://doi.org/10.1021/ic50192a064