DOI QR코드

DOI QR Code

원심모형시험을 이용한 케이슨 안벽의 지진시 거동에 대한 수치해석 검증

Verification of the Numerical Analysis on Caisson Quay Wall Behavior Under Seismic Loading Using Centrifuge Test

  • 이진선 (원광대학교 토목환경공학과) ;
  • 박태정 (원광대학교 토목환경공학과) ;
  • 이문교 (KAIST 건설 및 환경공학과) ;
  • 김동수 (KAIST 건설 및 환경공학과)
  • 투고 : 2018.10.23
  • 심사 : 2018.11.12
  • 발행 : 2018.11.30

초록

본 논문에서는 항만구조물의 성능기반 내진설계 도입을 위해서 액상화를 포함하는 비선형 유효응력해석기법의 검증을 실시하였다. 중력식 케이슨안벽의 지진시 거동에 대해서 수치해석의 결과는 동적원심모형시험의 결과와 원형스케일로 직접 검증되었다. 중력식 안벽의 모형은 강성토조내에 지진시 과잉간극수압의 증가가 발생하는 포화 사질토 지반위에 조성되었으며, 원심가속도 60g하에서 높이 10m, 폭 6m의 케이슨 안벽을 묘사할 수 있다. 원심모형시험의 원형스케일과 동일하게 2차원 평면 변형율 조건하에서 비선형 유효응력 수치해석 모델을 구성하였다. 지반의 비선형 거동모델과 함께 Byrne의 액상화 모델을 사용하였으며, 경계요소를 적용하여 안벽과 지반의 분리거동을 묘사하였다. 검증결과, 안벽의 잔류변위를 포함하여 지반 및 안벽의 수평가속도와 안벽기초 하부 사질토 지반의 과잉간극수압 증가양상 모두 유사한 결과를 나타내었다.

In this study, verification of the nonlinear effective stress analysis is performed for introducing performance based earthquake resistance design of port and harbor structures. Seismic response of gravitational caisson quay wall in numerical analysis is compared directly with dynamic centrifuge test results in prototype scale. Inside of the rigid box, model of the gravitational quay wall is placed above the saturated sand layer which can show the increase of excess pore water pressure. The model represents caisson quay wall with a height of 10 m, width of 6 m under centrifugal acceleration of 60 g. The numerical model is made in the same dimension with the prototype scale of the test in two dimensional plane strain condition. Byrne's liquefaction model is adopted together with a nonlinear constitutive model. Interface element is used for sliding and tensional separation between quay wall and the adjacent soils. Verification results show good agreement for permanent displacement of the quay wall, horizontal acceleration at quay wall and soil layer, and excess pore water pressure increment beneath the quay wall foundation.

키워드

GJBGC4_2018_v34n11_57_f0001.png 이미지

Fig. 1. Typical failure mechanism of caisson quay wall and quay crane after earthquake

GJBGC4_2018_v34n11_57_f0002.png 이미지

Fig. 2. Experimental model setup for dynamic centrifuge test

GJBGC4_2018_v34n11_57_f0003.png 이미지

Fig. 3. Measurement system installation profile (Model scale, Dimensions in cm)

GJBGC4_2018_v34n11_57_f0004.png 이미지

Fig. 4. Dimensions of the numerical model

GJBGC4_2018_v34n11_57_f0005.png 이미지

Fig. 5. Interface behavior used in the numerical analysis

GJBGC4_2018_v34n11_57_f0006.png 이미지

Fig. 6. Shear modulus and damping ratio fitting results of dry silica sand

GJBGC4_2018_v34n11_57_f0007.png 이미지

Fig. 7. Updated the maximum shear modulus distribution after static equilibrium (Unit, Pa)

GJBGC4_2018_v34n11_57_f0008.png 이미지

Fig. 8. Shear wave velocity of silica sand with confining pressure

GJBGC4_2018_v34n11_57_f0009.png 이미지

Fig. 9. Incremental Volumetric Strain Curves (Martin et al., 1975)

GJBGC4_2018_v34n11_57_f0010.png 이미지

Fig. 10. Changes of volumetric strain as increasing number of cycles (Itasca, 2013)

GJBGC4_2018_v34n11_57_f0011.png 이미지

Fig. 11. Diagrammatic cross section of particulate group showing packing changes that occur during cyclic loading (Youd, 1977)

GJBGC4_2018_v34n11_57_f0012.png 이미지

Fig. 12. Forces acting on a typical waterfront retaining wall (Bellezza et al., 2009)

GJBGC4_2018_v34n11_57_f0013.png 이미지

Fig. 13. Step by step analysis following construction stage

GJBGC4_2018_v34n11_57_f0014.png 이미지

Fig. 14. Comparison of the horizontal acceleration history for the major points

GJBGC4_2018_v34n11_57_f0015.png 이미지

Fig. 15. Comparison of the porewater pressure history for the major points

GJBGC4_2018_v34n11_57_f0016.png 이미지

Fig. 16. Comparison of the permanent displacement of the quay wall

Table 1. Input parameters for the numerical analysis

GJBGC4_2018_v34n11_57_t0001.png 이미지

Table 2. Engineering properties of the silica sands

GJBGC4_2018_v34n11_57_t0002.png 이미지

Table 3. Mathematical fitting function models for nonlinear cyclic behavior of soil in FLAC analysis

GJBGC4_2018_v34n11_57_t0003.png 이미지

Table 4. Engineering parameters of silica sand

GJBGC4_2018_v34n11_57_t0004.png 이미지

참고문헌

  1. Bellezza, I., Fentini, R., Fratalocchi, E., and Pasqualini, E. (2009), "Stability of Waterfront Retaining Walls in Seismic Conditions", Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Egypt.
  2. Byrne, P.M. (1991), "A Cyclic Shear-volume Coupling and Porepressure Model for Sand", Proceedings of Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, Paper No.1.24, pp.47-55.
  3. Choo, Y.W. and Kim, D.S. (2005), "Dynamic Deformation Characteristics of Sands Under Various Drainage Conditions", Journal of the Korean Geotechnical Society, Vol.21, No.3, pp.27-42
  4. Dokainish, M.A. and Subbaraj, K.A. (1988), "Survey of Direct Time-integration Methods in Computational Structural Dynamics -I. Explicit Methods", Computers and Structures, Vol.32, pp. 1371-1386, DOI:10.1016/0045-7949(89)90314-3.
  5. Elgamal, A. W., Dobry, R., Parra, E., and Yang, Z. (1998), "Soil Dilation and Shear Deformations During Liquefaction", Proceedings of Fourth International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri.
  6. Kim, D.S. and Stokoe, K.H. (1994), "Torsional Motion Monitoring System for Small-Strain (10-5 to 10-3%) Soil Testing", Geotechnical Testing Journal, Vol.17, No.1, 1994, pp.17-26, https://doi.org/10.1520/GTJ10068J.
  7. Kim, S.N., Lee, M.G., Ha, J.G., Kim, J.H., and Kim, D.S. (2017), "Comparison of Liquefaction Behavior with Different Relative Density using Centrifuge Test", Proceedings of The 30th KKHTCNN Symposium on Civil Engineering, National Taiwan University, Taipei, Taiwan.
  8. Kim, S.R., Kwon, O.S., and Kim M.M. (2004), "Evaluation of Force Components Acting on Gravity Type Quay Walls During Earthquakes", Soil Dynamics and Earthquake Engineering, Vol. 24, pp.853-866. https://doi.org/10.1016/j.soildyn.2004.04.007
  9. Kuhlemeyer, R.L. and Lysmer, J. (1973), "Finite Element Method Accuracy for Wave Propagation Problems", Journal of Soil Mechanics and Foundation Engineering Division, ASCE, Vol.99, No.5, pp. 421-427.
  10. Hardin, B.O. and Drnevich, V.P. (1972), "Shear Modulus and Damping in Soils: Design Equations and Curves", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.98, No.SM7, pp.667-692.
  11. Itasca Consulting Group (2018), FLAC2D (Fast Lagrangian Analysis of Continua in 2 Dimensions) User's Guide, Minnesota, USA.
  12. Martin, G.R., Finn, W.D.L., and Seed, H.B. (1975), "Fundamentals of Liquefaction under Cyclic Loading", Journal of Geotechnical Engineering Division, ASCE, Vol.101, (GT5), pp.423-438.
  13. Matsusawa, H., Ishibashi, I., and Kawamura, M. (1985), "Dynamic Soil and Water Pressures on Submerged Soils", Journal of the Geotechnical Engineering Division, ASCE, Vol.CV, No.4, pp. 449-464.
  14. Mejia, L.H. and Dawson, E.M. (2006), "Earthquake Deconvolution for FLAC", Proceedings of 4th International FLAC Symposium on Numerical Modelling in Geomechanics, Paper 04-10, ISBN 0-9767577-0-2.
  15. Ministry of Oceans and Fisheries (2016), Development of performancebased seismic design technologies for advancement in design codes for port structures, KIMST, Project No.
  16. Nozu, A., Ichii, K. and Sugano, T. (2004), "Seismic Design of Port Structures", Journal of Japan Association for Earthquake Engineering, Vol.4 No.(3-SP), pp.195-208. https://doi.org/10.5610/jaee.4.3_195
  17. Okamura, M. and Inoue, T. (2012), "Preparation of Fully Saturated Models for Liquefaction Study", International Journal of Physical Modelling in Geotechnics, Vol.12, No.1, pp.39-46. https://doi.org/10.1680/ijpmg.2012.12.1.39
  18. Youd, T.L. (1977), "Packing Changes and Liquefaction Susceptibility", Journal of the Geotechnical Engineering Division, ASCE, Vol.103, GT8, pp.918-923.
  19. Wener, P.W. and Sundquist, K.J. (1949), "On Hydrodynamic Earthquake Effects", Trans. American Geophysical Union, Vol.30.
  20. Westergaard H. M. (1933), "Water Pressures on Dams during Earthquakes", Trans. ASCE 98, pp.418-433.

피인용 문헌

  1. 배수조건에 따른 액상화 수치모델의 거동평가 vol.35, pp.11, 2018, https://doi.org/10.7843/kgs.2019.35.11.63