DOI QR코드

DOI QR Code

지반내 세립토 유동에 대한 수치해석적 연구

Numerical Study on Fine Migration in Geo-materials

  • 신호성 (울산대학교 건설환경공학부)
  • Shin, Hosung (Dept. of Civil & Environmental Engrg., Univ. of Ulsan)
  • 투고 : 2018.10.03
  • 심사 : 2018.10.24
  • 발행 : 2018.11.30

초록

지반의 내부침식은 유체 흐름에 의하여 입자골격에 부착된 세립토가 이탈하는 현상이며, 지속적인 세립토의 유동은 지반구조물의 수리-역학적 특성을 약화시킨다. 본 논문은 세립토의 유동에 관한 지배방정식을 정립하고 수치해석 기법을 제안하였다. 공극내의 세립토는 액상의 세립토($c_e$), 조립토에 부착된 입자(${\sigma}_a$) 그리고 조립토골격에 폐색된 세립토(${\sigma}_s$)로 구분하여 상관계를 제시하였다. 이를 바탕으로 세립토의 유동과 공극수의 흐름에 대한 수리학적 지배방정식들과 유한요소 수식화를 제시하였다. 세립토의 이탈, 부착 그리고 공극막힘에 대한 구성 모델들을 제시하였으며, 실내 1차원 침식실험으로부터 모델변수를 도출하는 방법을 제안하였다. 그리고 세립토의 공극 막힘 현상에 의한 지반의 투수계수 변화에 대한 추정식을 제안하였다. 기존의 침식실험 결과에 대한 수치해석을 통하여 개발된 해석기법과 세립토 유동 모델의 적정성을 검증하였다.

Soil internal erosion is a phenomenon in which fines attached to the solid skeleton are detached by fluid flow, and this continuous fine migration weakens the hydro-mechanical characteristics of the ground structure. This paper proposed governing equations for fine migration in pore spaces and its related scheme for the numerical analysis. Phase diagram for fine particles includes three different states: detached fines in the liquid phase ($c_e$), attached fines in the solid phase (${\sigma}_a$), and pore-clogged fines in the solid phase (${\sigma}_s$). Numerical formulations for finite element method are developed based on the hydraulic governing equations of pore fluid and fine migration. This study proposed a method of estimating model parameters for fine detachment, attachment, and clogging from 1D erosion experiments. And it proposed an analytical formula for hydraulic permeability function considering fine clogging. Numerical analysis of the previous erosion test developed the numerical scheme and verified the adequacy of fine migration models.

키워드

GJBGC4_2018_v34n11_33_f0001.png 이미지

Fig. 1. Schematic illustration of volume fractions of fine particles

GJBGC4_2018_v34n11_33_f0002.png 이미지

Fig. 3. Comparison of normalized hydraulic conductivity as a function of clogging fine particles (ø=0.37)

GJBGC4_2018_v34n11_33_f0003.png 이미지

Fig. 4. Numerical results for hydraulic gradient ih=0.55. (a) Variation of attached fines σa at different locations with time. (b) Change of fine concentration ce in the fluid with time

GJBGC4_2018_v34n11_33_f0004.png 이미지

Fig. 2. (a) Determination of maximum fine retention function from one dimensional seepage flow test (Sterpi, 2003). (b) Variation of fine erosion coefficient Kd with hydraulic gradient ih, (c) Comparison between experimental results and a developed model of fine particle erosions with time

참고문헌

  1. Alem, A., Ahfir, N.D., Elkawafi, A., and Wang, H.Q. (2015), "Hydraulic Operating Conditions and Particle Concentration Effects on Physical Clogging of a Porous Medium", Transport in Porous Media, 106(2), pp.303-321. https://doi.org/10.1007/s11242-014-0402-8
  2. Bear, J. (1990), Introduction to modeling of transport phenomena in porous media, Dordrecht, Kluwer Academic Publishers, p.553.
  3. Bedrikovetsky, P., Siqueira, F.D., Furtado, C., and de Souza, A.L.S. (2011), "Modified Prticle Detachment Model for Colloidal Transport in Porous Media", J. Transp. Porous Media, 86, pp.353-383. https://doi.org/10.1007/s11242-010-9626-4
  4. Bennacer, L., Ahfir, N.D., Bouanani, A., Alem, A., and Wang, H.Q. (2013), "Suspended Particles Transport and Deposition in Saturated Granular Porous Medium: Particle Size Effects", Transport in Porous Media, 100, pp.377-392. https://doi.org/10.1007/s11242-013-0220-4
  5. Chen, H.X. and Zhang, L.M. (2015), "EDDA 1.0: Integrated Simulation of Debris Flow Erosion, Deposition and Property Changes", Geosci. Model Dev., 8, pp.829-844. https://doi.org/10.5194/gmd-8-829-2015
  6. Civan, F. (2016), Reservoir Formation Damage, third ed. Gulf Professional Publishing, Burlington, MA, USA. p.1042.
  7. Cividini, A., Bonomi, S., Vignati, G.C., and Gioda, G. (2009), "Seepage-induced Erosion in Granular Soil and Consequent Settlements", International Journal of Geomechanics, 9(4), pp.187-194. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(187)
  8. Coronado, M. and Díaz-Viera, M.A. (2017), "Modeling Fines Migration and Permeability Loss Caused by Low Salinity in Porous Media", J. Petrol. Sci. Eng., 150, pp.355-365. https://doi.org/10.1016/j.petrol.2016.12.021
  9. Cui, X., Liu, Q., and Zhang, C. (2017), "Physical Factors Affecting the Transport and Deposition of Particles in Saturated Porous Media", Water Science and Technology: Water Supply, 17(6), pp.1616-1625. https://doi.org/10.2166/ws.2017.065
  10. Fell, R., Wan, C. F., Cyganiewicz, J., and Foster, M. (2003), "Time for Development of Internal Erosion and Piping in Embankment Dams", J.Geotech. Geoenviron. Eng., 129(4), pp.307-314. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(307)
  11. Fujisawa, K., Murakami, A., and Nishimura, S. (2010), "Numerical Analysis of the Erosion and the Transport of Fine Particles within Soils Leading to the Piping Phenomenon", Soils and Foundations, 50(4), pp.471-482. https://doi.org/10.3208/sandf.50.471
  12. Hunter, R.P. and Bowman, E.T. (2017), "Visualisation of Seepageinduced Suffusion and Suffosion within Internally Erodible Granular Media", Geotechnique, 68(10), pp.918-930.
  13. Iverson, R.M. (2012), "Elementary Theory of Bed-sediment Entrainment by Debris Flows and Avalanches", J. Geophys. Res., 117, F03006.
  14. Kartic, K.C. and Fogler, H.S. (1998), Migrations of Fines in Porous Media, Springer Science & Business Media, p.173.
  15. Lei, X., Yang, Z., He, S., Liu, E., Wong, H., and Li, X. (2017), "Numerical Investigation of Rainfall-induced Fines Migration and its Influences on Slope Stability", Acta Geotech, 12(6), pp.1431-1446. https://doi.org/10.1007/s11440-017-0600-y
  16. Logan, D.J. (2001), Transport Modeling in Hydrogeochemical Systems, Springer, New York, p.226.
  17. Moffat, R. and Fannin, R.J. (2011), "A Hydromechanical Relation Governing Internal Stability of Cohesionless Soil", Can. Geotech. J., 48(3), pp.413-424. https://doi.org/10.1139/T10-070
  18. Pang, S. and Sharma, M.M. (1997), "A Model for Predicting Injectivity Decline in Water-injection Wells", SPE paper 28489, 12(3), pp.194-201.
  19. Papamichos, E. and Vardoulakis, I. (2005), "Sand Erosion with a Porosity Diffusion Law", Computers and Geotechnics, 32(1), pp. 47-58. https://doi.org/10.1016/j.compgeo.2004.11.005
  20. Seghir, A., Benamar, A., and Huaqing, W. (2014), "Effects of Fine Particles on the Suffusion of Cohesionless Soils", Transp. Porous Media, 103(2), pp.233-247. https://doi.org/10.1007/s11242-014-0299-2
  21. Sibille, L., Marot, D., and Sail, Y. (2015), "A Description of Internal Erosion by Suffusion and Induced Settlements on Cohesionless Granular Matter", Acta Geotech, 10, pp.735-748. https://doi.org/10.1007/s11440-015-0388-6
  22. Sterpi, D. (2003), "Effects of the Erosion and Transport of Fine Particles due to Seepage Flow", International Journal of Geomechanics, 3(1), pp.111-122. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(111)
  23. Tiab, D. and Donaldson, E.C. (2016), Petrophysics:Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, 4th Edition, Gulf Professional Publishing, p.918.
  24. Uzuoka, R., Ichiyama, T., Mori, T., and Kazama, M. (2012), "Hydromechanical Analysis of Internal Erosion with Mass Exchange between Solid and Water", Sixth International Conference on Scour and Erosion, Paris, pp.655-662.
  25. Wan, R.G. and Wang, J. (2004), "Analysis of Sand Production in Unconsolidated Oil Sand Using a Coupled Erosional Stressdeformation Model", J. Can. Pet. Technol., 43(2), pp.47-53.
  26. Yang, Y., Siqueira, F.D., Vaz, A.S., You, Z., and Bedrikovetsky, P. (2016), "Slow Migration of Detached Fine Particles Over Rock Surface in Porous Media", Journal of Natural Gas Science and Engineering, 34, pp.1159-1173. https://doi.org/10.1016/j.jngse.2016.07.056
  27. You, Z., Bedrikovetsky, P., Badalyan, A., Hand, M., and Matthews, C. (2014), "Formation Damage and Fines Migration in Geothermal Reservoirs (modelling and field case study)", Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, pp.24-26.
  28. Zeinijahromi, A.V. and Bedrikovetsky, P. (2012), "Well Impairment by Fines Production in Gas Fields", J. Pet. Sci. Eng., 88-89, pp. 125-135. https://doi.org/10.1016/j.petrol.2012.02.002
  29. Zhang, L. and Zhang, L.L. (2014), "Influence of Particle Transport on Slope Stability under Rainfall Infiltration", In Geotechnical Safety and Risk IV, pp.323-328.
  30. Zhang, X.S., Wong, H., Leo, C.J., Bui, T.A., Wang, J.X., Sun, W.H., and Huang, Z.Q. (2013), "A Thermodynamics-based Model on the Internal Erosion of Earth Structures", Geotechnical and Geological Engineering, 31(2), pp.479-492. https://doi.org/10.1007/s10706-012-9600-8
  31. Zhang, L., Peng, M., Chang, D., and Xu, Y. (2016), Dam Failure Mechanisms and Risk Assessment, John Wiley & Sons Singapore Pte. Ltd., p.476.