Fig. 1. Model of wave propagation in a mass containing a planar joint
Fig. 2. Comparison of Miller’s analytical solutions and numerical tests
Fig. 3. Effect of in-situ stress (𝜙 = 0, c = 0.1 MPa, σt = 0)
Fig. 4. Effect of friction angle at joint (In-situ stress = 1.0 MPa, c = 0.1 MPa, σt = 0)
Fig. 5. Effect of friction angle at joint (In-situ stress = 1.0 MPa, 𝜙 = 30°, σt = 0)
Fig. 6. Effect of joint inclination angle (In-situ stress = 1.0 MPa, 𝜙 = 30°, c = 0.1 MPa, σt = 0)
Fig. 7. Change of transmission, reflection, and absorption coefficients with joint inclination
Table 1. Properties and conditions in the numerical simulations
참고문헌
- Boadu, F. K. and Long, T. L. (1996), Effects of fractures on seismic wave velocity and attenuation, Int. J. Geophysics, Vol. 127, pp. 86-110. https://doi.org/10.1111/j.1365-246X.1996.tb01537.x
- Cai J. G. and Zhao, J. (2000), Effects of multiple parallel fractures on apparent wave attenuation in rock masses, Int. J. of Rock Mech. Min. Sci., Vol. 37(4), pp. 661-682. https://doi.org/10.1016/S1365-1609(00)00013-7
- Deng, X. F., Zhu, J. B., Chen, S. G. and Zhao, J. (2012), Some fundamental issues and verification of 3DEC in modeling wave propagation in jointed rock masses, Rock Mech. Rock Eng., Vol. 45(5), pp. 943-951. https://doi.org/10.1007/s00603-012-0287-1
- Huang, X., Qi, S., Xia, K., Zheng, H. and Zheng, B. (2016), Propagation of high amplitude stress waves through a filled artificial joint: An experimental study, J. Appl. Geophys. Vol. 130, pp. 1-7. https://doi.org/10.1016/j.jappgeo.2016.04.003
- Johnson W. (1972), Impact Strength of Materials, Published by Edward Arnold, London, 361p.
- Kolsky, H. (1953), Stress Waves in Solids, Clarendon Press, Oxford, 212 p.
- Li, J. C. and Ma, G. W. (2009), Experimental study of stress wave propagation across a filled rock joint, Int. J. of Rock Mech. Min. Sci., Vol. 46, pp. 471-478. https://doi.org/10.1016/j.ijrmms.2008.11.006
- Li, Y., Zhu, Z., Li, B., Deng, J. and Xie, H. (2011), Study on the transmission and reflection of stress waves across joints, Int. J. of Rock Mech. Min. Sci., Vol. 48, pp. 364-371. https://doi.org/10.1016/j.ijrmms.2011.01.002
- Miller, R. K. (1978), The effects of boundary friction on the propagation of elastic waves, Bull. Seis. Soc. America, Vol. 68(4), pp. 987-998.
- Myer, L. R., Pyrak-Nolte, L. J. and Cook., N. G. W. (1990), Effects of single fractures on seismic wave propagation, Proc. of the International Symposium on Rock Joints, A. A. Balkemapp, Rotterdam, pp. 413-422.
- Perino, A. (2011), Wave propagation through discontinuous media in rock engineering, Ph.D. thesis, Polytechnic University of Turin, Italy.
- Schoenberg, M. (1980), Elastic wave behavior across linear slip interfaces, J. Acoust. Soc., Vol. 68(5), pp. 1516-1521. https://doi.org/10.1121/1.385077
- Sebastian, R. and Sitharam, T. (2014), Transmission of elastic waves through a frictional boundary, Int. J. Rock Mech. Min. Sci. Vol. 66, pp. 84-90. https://doi.org/10.1016/j.ijrmms.2013.12.011
- Wu, W., Li, J. and Zhao, J. (2013), Seismic response of adjacent filled parallel rock fractures with dissimilar properties, J. Appl. Geophys, Vol. 96, pp. 33-37. https://doi.org/10.1016/j.jappgeo.2013.06.009