DOI QR코드

DOI QR Code

Accumulation of oxyresveratrol in Ramulus mori upon postharvest storage

숙성에 의한 뽕나무 상지 내 옥시레스베라트롤 축적

  • Kim, Jun-Ho (Marine Bioenergy R&D Consortium) ;
  • Kim, Ki-Hyun (Marine Bioenergy R&D Consortium) ;
  • Lee, Min-Young (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University) ;
  • Lim, Young-Hee (Department of Public Health Science (BK21 PLUS Program), Graduate School, Korea university) ;
  • Kim, Jeong-Keun (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University)
  • 김준호 (해양바이오에너지 생산기술개발연구센터) ;
  • 김기현 (해양바이오에너지 생산기술개발연구센터) ;
  • 이민영 (한국산업기술대학교 생명화학공학과) ;
  • 임영희 (고려대학교 보건과학과(BK21 PLUS Program)) ;
  • 김정근 (한국산업기술대학교 생명화학공학과)
  • Received : 2017.09.22
  • Accepted : 2017.12.04
  • Published : 2018.02.28

Abstract

Oxyresveratrol (trans-2, 3', 4, 5'-tetrahydroxystilbene), found in many plants including grape, peanut and mulberry, is a phytoalexin, an antimicrobial and antioxidative substance that rapidly accumulates in areas infected by the pathogen. We examined the accumulation of oxyresveratrol in nine Morus alba L. cultivars with respect to storage time and temperature postharvest and infection with GRAS microorganisms. Among the nine cultivars, the Suwon cultivar showed the highest oxyresveratrol content (9.6-fold increase) postharvest, when stored at $30^{\circ}C$ for 7 days. The optimal temperature and postharvest storage time for oxyresveratrol accumulation was $30^{\circ}C$ and 6 days. When Ramulus mori was infected with five microorganisms, the accumulation of oxyresveratrol increased over 4-fold in response to B. coagulans infection. These results suggest that oxyresveratrol accumulation is influenced by storage temperature, storage time, Ramulus mori cultivars, and microbial attack. Therefore, postharvest storage for an appropriate time period at a suitable temperature might be a useful way to industrially produce Ramulus mori cultivars with high oxyresveratrol content.

뽕나무의 어린 가지인 상지에서 기능성 물질인 옥시레스베라트롤이 발견됨에 따라 상지를 고부가 건강 기능성 식품 소재로 개발을 위해 옥시레스베라트롤 함량 증대 연구가 필요하였다. 따라서 본 연구에서는 상지의 옥시레스베라트롤 함량을 증가시키기 위하여 국내산 상지의 품종, 숙성 기간, 숙성 온도, 미생물에 의한 접종 등의 숙성 방법에 따른 옥시레스베라트롤 함량 변화를 조사하였다. 국내에서 재배되는 뽕나무 9품종의 상지를 절단 후 7일 숙성하여 옥시레스베라트롤 함량을 비교한 결과, 품종들 간에 큰 차이가 있었으며, 그 중 수원 품종이 숙성에 의해 옥시레스베라트롤 축적이 가장 높게 나타났다. 상지의 옥시레스베라트롤 축적을 위한 최적 숙성 온도를 조사한 결과, $30^{\circ}C$가 최적 온도이었으며 $70^{\circ}C$의 고온 숙성 시에는 옥시레스베라트롤의 축적 효과가 없었다. 뽕나무 9품종 중에서 선발된 수원 품종과 청일 품종에 대한 숙성 기간에 따른 옥시레스베라트롤 함량 변화를 확인한 결과, $30^{\circ}C$, 6일 숙성 시 수원 품종은 약 14배, 청일 품종은 약 7.8배 증가하였으나 8일 이후는 급속히 감소하였다. GRAS 등급의 L. acidophilus, B. coagulans, R. capsulatus, S. cerevisiae, E. faecium 등을 상지에 접종한 후 숙성 기간에 따른 옥시레스베라트롤 함량 변화를 조사한 결과, 미생물이 접종된 실험군들은 대조군에 비해 옥시레스베라트롤 함량이 약 1.7-4.0배 증가하였다. 특히 5균주 중에서 B. coagulans가 옥시레스베라트롤 축적에 가장 뛰어난 효과를 보였다. 따라서 상지 내 미생물 접종에 의한 생물학적 스트레스는 옥시레스베라트롤 축적에 매우 효과적인 방법으로 확인되었다. 결과적으로 상지 내 축적되는 옥시레스베라트롤 함량은 건조 온도, 건조 시간, 수분의 상태 등의 물리적인 요인뿐만 아니라 감염 미생물의 종류에 의해서도 큰 차이가 있음을 확인하였다. 또한 상지 내 옥시레스베라트롤의 함량을 증대시키기 위해서 자외선, 햇빛 등의 물리적 스트레스, 오존, 락스, 재스몬산메틸 등의 화학적 스트레스에 의한 효과도 검토해야 할 것이다. 게다가 숙성동안 옥시레스베라트롤 합성의 주효소인 스틸벤 합성효소 발현량이 조사된다면 숙성에 의한 옥시레스베라트롤 함량 증대 원인을 보다 명확하게 규명할 수 있을 것이다.

Keywords

References

  1. Mongolsuk S, Robertson A, Towers R. 429. 2: 4: 3': 5'-Tetrahydroxystilbene from Artocarpus lakoocha. J. Chem. Soc. 2231-2233 (1957)
  2. Shao B, Guo HZ, Cui YJ, Liu AH, Yu HI, Guo H, Xu M, Guo DA. Simultaneous determination of six major stilbenes and flavonoids in Smilax china by high performance liquid chromatography.J. Pharmaceut. Biomed. 44: 737-742 (2007) https://doi.org/10.1016/j.jpba.2007.03.008
  3. Djapic N, Djarmati Z, Filip S, Jankov RJ. A stilbene from the heartwood of Maclura pomifera. J. Serb. Chem. Soc. 68: 235-237 (2003) https://doi.org/10.2298/JSC0303235D
  4. Hanawa F, Tahara S, Mizutani J. Antifungal stress compounds from Veratrum grandiflorum leaves treated with cupric chloride. Phytochemistry 31: 3005-3007 (1992) https://doi.org/10.1016/0031-9422(92)83436-3
  5. Kim JK, Kim MJ, Cho SG, Kim MK, Kim SW, Lim YH. Biotransformation of mulberroside A from Morus alba results in enhancement of tyrosinase inhibition. J. Ind. Microbiol. Biot. 37: 631-637 (2010) https://doi.org/10.1007/s10295-010-0722-9
  6. Chung KO, Kim BY, Lee MH, Kim YR, Chung HY, Park JH, Moon JO. Invitro and invivo antiinflammatory effect of oxyresveratrol from Morus alba L. J. Pharm. Pharmacol. 55: 1695-1700 (2003) https://doi.org/10.1211/0022357022313
  7. Lorenz P, Roychowdhury S, Engelmann M, Wolf G, Horn TFW. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 9: 64-76 (2003) https://doi.org/10.1016/j.niox.2003.09.005
  8. Breuer C, Wolf Gerald, Andrabi SA, Lorenz P, Horn TFW. Blood-brain barrier permeability to the neuroprotectant oxyresveratrol. Neurosci. Lett. 393: 113-118 (2006) https://doi.org/10.1016/j.neulet.2005.09.081
  9. Jo SP, Kim JK, Lim YH. Antihyperlipidemic effects of stilbenoids isolated from Morus alba in rats fed a high-cholesterol diet. Food Chem. Toxicol. 65: 213-218 (2014) https://doi.org/10.1016/j.fct.2013.12.040
  10. He H, Lu YH. Comparison of inhibitory activities and mechanisms of five mulberry plant bioactive components against ${\alpha}$-glucosidase. J. Agr. Food Chem. 61: 8110-8119 (2013) https://doi.org/10.1021/jf4019323
  11. Wu LS, Wang XJ, Wang H, Yang HW, Jia AQ, Ding Q. Cytotoxic polyphenols against breast tumor cell in Smilax china L. J. Ethnopharmacol. 130: 460-464 (2010) https://doi.org/10.1016/j.jep.2010.05.032
  12. Andrabi SA, Spina MG, Lorenz P, Ebmeyer U, Wolf G, Horn TFW. Oxyresveratrol (trans-2, 3', 4, 5'-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia. Brain Res. 1017: 98-107 (2004) https://doi.org/10.1016/j.brainres.2004.05.038
  13. Lee JY, Kwon GY, Park JE, Kim JK, Lim YH. Brief Communication: SIR-2.1-dependent lifespan extension of Caenorhabditis elegans by oxyresveratrol and resveratrol. Exp. Biol. M. 241: 1757-1763 (2016) https://doi.org/10.1177/1535370216650054
  14. Hwang DH, Jo SP, Lee JY, Kim JK, Kim KH, Lim YH. Antihyperlipidaemic effects of oxyresveratrol containing Ramulus mori ethanol extract in rats fed a high-cholesterol diet. J. Funct. Food. 19: 353362 (2015)
  15. Park GS, Kim JK. Kim JH. Anti-inflammatory action of ethanolic extract of Ramulus mori on the BLT2-linked cascade. BMB Rep. 49: 232-237 (2016) https://doi.org/10.5483/BMBRep.2016.49.4.002
  16. Hwang DH, Jo HA, Kim JK, Lim YH. Oxyresveratrol-containing Ramulus mori ethanol extract attenuates acute colitis by suppressing inflammation and increasing mucin secretion. J. Funct. Food. 35: 146-158 (2017) https://doi.org/10.1016/j.jff.2017.05.042
  17. Lee JY, Kwon GY, Park JE, Kim JK, Choe SY, Seo YH, Lim YH. An ethanol extract of Ramulus mori improves blood circulation by inhibiting platelet aggregation. Biosci. Biotec. Bioch. 80: 1410-1415 (2016) https://doi.org/10.1080/09168451.2016.1156479
  18. Cantos E, Garcia-Viguera C, de Pascual-Teresa S, Tomas-Barberan FA. Effect of post harvest ultraviolet irradiation on resveratrol and other phenolics of cv. Napoleon table grapes. J. Agr. Food Chem. 48: 4606-4612 (2000) https://doi.org/10.1021/jf0002948
  19. Langcake P, Pryce RJ. A new class of phytoalexins from grapevines. Cell. Mol. Life Sci. 33: 151-152 (1977) https://doi.org/10.1007/BF02124034
  20. Jimenez JB, Orea JM, Urena AG, Escribano P, de la Osa PL, Guadarrama A. Short anoxic treatments to enhance trans-resveratrol content in grapes and wine. Eur. Food Res. Technol. 224: 373-378 (2007)
  21. Houille B, Besseau S, Courdavault V, Oudin A, Glevarec G, Delanoue G, Guerin L, Simkin AJ, Papon N, Clastre M, Giglioli-Guivarc'h N, Lanoue A. Biosynthetic origin of E-resveratrol accumulation in grape canes during postharvest storage. J. Agr. Food Chem. 63: 1631-1638 (2015) https://doi.org/10.1021/jf505316a
  22. Boue SM, Shih BY, Burow ME, Eggleston G, Lingle S, Pan YB, Daigle K, Bhatnagar D. Postharvest accumulation of resveratrol and piceatannol in sugarcane with enhanced antioxidant activity. J. Agr. Food Chem. 61: 8412-8419 (2013) https://doi.org/10.1021/jf4020087
  23. Sales JM, Resurreccion AVA. Maximising resveratrol and piceid contents in UV and ultrasound treated peanuts. Food Chem. 117: 674-680 (2009) https://doi.org/10.1016/j.foodchem.2009.04.075
  24. Bonghi C, Rizzini FM, Gambuti A, Moio L, Chkaiban L, Tonutti P. Chkaiban L. Phenol compound metabolism and gene expression in the skin of wine grape (Vitis vinifera L.) berries subjected to partial postharvest dehydration. Postharvest Biol. Tec. 67: 102-109 (2012) https://doi.org/10.1016/j.postharvbio.2012.01.002
  25. Brinker AM, Seigler DS. Time course of piceatannol accumulation in resistant and susceptible sugarcane stalks after inoculation with Colletotrichum falcatum. Physiol. Mol. Plant P. 42: 169-176 (1993) https://doi.org/10.1006/pmpp.1993.1015