References
- Mongolsuk S, Robertson A, Towers R. 429. 2: 4: 3': 5'-Tetrahydroxystilbene from Artocarpus lakoocha. J. Chem. Soc. 2231-2233 (1957)
- Shao B, Guo HZ, Cui YJ, Liu AH, Yu HI, Guo H, Xu M, Guo DA. Simultaneous determination of six major stilbenes and flavonoids in Smilax china by high performance liquid chromatography.J. Pharmaceut. Biomed. 44: 737-742 (2007) https://doi.org/10.1016/j.jpba.2007.03.008
- Djapic N, Djarmati Z, Filip S, Jankov RJ. A stilbene from the heartwood of Maclura pomifera. J. Serb. Chem. Soc. 68: 235-237 (2003) https://doi.org/10.2298/JSC0303235D
- Hanawa F, Tahara S, Mizutani J. Antifungal stress compounds from Veratrum grandiflorum leaves treated with cupric chloride. Phytochemistry 31: 3005-3007 (1992) https://doi.org/10.1016/0031-9422(92)83436-3
- Kim JK, Kim MJ, Cho SG, Kim MK, Kim SW, Lim YH. Biotransformation of mulberroside A from Morus alba results in enhancement of tyrosinase inhibition. J. Ind. Microbiol. Biot. 37: 631-637 (2010) https://doi.org/10.1007/s10295-010-0722-9
- Chung KO, Kim BY, Lee MH, Kim YR, Chung HY, Park JH, Moon JO. Invitro and invivo antiinflammatory effect of oxyresveratrol from Morus alba L. J. Pharm. Pharmacol. 55: 1695-1700 (2003) https://doi.org/10.1211/0022357022313
- Lorenz P, Roychowdhury S, Engelmann M, Wolf G, Horn TFW. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 9: 64-76 (2003) https://doi.org/10.1016/j.niox.2003.09.005
- Breuer C, Wolf Gerald, Andrabi SA, Lorenz P, Horn TFW. Blood-brain barrier permeability to the neuroprotectant oxyresveratrol. Neurosci. Lett. 393: 113-118 (2006) https://doi.org/10.1016/j.neulet.2005.09.081
- Jo SP, Kim JK, Lim YH. Antihyperlipidemic effects of stilbenoids isolated from Morus alba in rats fed a high-cholesterol diet. Food Chem. Toxicol. 65: 213-218 (2014) https://doi.org/10.1016/j.fct.2013.12.040
-
He H, Lu YH. Comparison of inhibitory activities and mechanisms of five mulberry plant bioactive components against
${\alpha}$ -glucosidase. J. Agr. Food Chem. 61: 8110-8119 (2013) https://doi.org/10.1021/jf4019323 - Wu LS, Wang XJ, Wang H, Yang HW, Jia AQ, Ding Q. Cytotoxic polyphenols against breast tumor cell in Smilax china L. J. Ethnopharmacol. 130: 460-464 (2010) https://doi.org/10.1016/j.jep.2010.05.032
- Andrabi SA, Spina MG, Lorenz P, Ebmeyer U, Wolf G, Horn TFW. Oxyresveratrol (trans-2, 3', 4, 5'-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia. Brain Res. 1017: 98-107 (2004) https://doi.org/10.1016/j.brainres.2004.05.038
- Lee JY, Kwon GY, Park JE, Kim JK, Lim YH. Brief Communication: SIR-2.1-dependent lifespan extension of Caenorhabditis elegans by oxyresveratrol and resveratrol. Exp. Biol. M. 241: 1757-1763 (2016) https://doi.org/10.1177/1535370216650054
- Hwang DH, Jo SP, Lee JY, Kim JK, Kim KH, Lim YH. Antihyperlipidaemic effects of oxyresveratrol containing Ramulus mori ethanol extract in rats fed a high-cholesterol diet. J. Funct. Food. 19: 353362 (2015)
- Park GS, Kim JK. Kim JH. Anti-inflammatory action of ethanolic extract of Ramulus mori on the BLT2-linked cascade. BMB Rep. 49: 232-237 (2016) https://doi.org/10.5483/BMBRep.2016.49.4.002
- Hwang DH, Jo HA, Kim JK, Lim YH. Oxyresveratrol-containing Ramulus mori ethanol extract attenuates acute colitis by suppressing inflammation and increasing mucin secretion. J. Funct. Food. 35: 146-158 (2017) https://doi.org/10.1016/j.jff.2017.05.042
- Lee JY, Kwon GY, Park JE, Kim JK, Choe SY, Seo YH, Lim YH. An ethanol extract of Ramulus mori improves blood circulation by inhibiting platelet aggregation. Biosci. Biotec. Bioch. 80: 1410-1415 (2016) https://doi.org/10.1080/09168451.2016.1156479
- Cantos E, Garcia-Viguera C, de Pascual-Teresa S, Tomas-Barberan FA. Effect of post harvest ultraviolet irradiation on resveratrol and other phenolics of cv. Napoleon table grapes. J. Agr. Food Chem. 48: 4606-4612 (2000) https://doi.org/10.1021/jf0002948
- Langcake P, Pryce RJ. A new class of phytoalexins from grapevines. Cell. Mol. Life Sci. 33: 151-152 (1977) https://doi.org/10.1007/BF02124034
- Jimenez JB, Orea JM, Urena AG, Escribano P, de la Osa PL, Guadarrama A. Short anoxic treatments to enhance trans-resveratrol content in grapes and wine. Eur. Food Res. Technol. 224: 373-378 (2007)
- Houille B, Besseau S, Courdavault V, Oudin A, Glevarec G, Delanoue G, Guerin L, Simkin AJ, Papon N, Clastre M, Giglioli-Guivarc'h N, Lanoue A. Biosynthetic origin of E-resveratrol accumulation in grape canes during postharvest storage. J. Agr. Food Chem. 63: 1631-1638 (2015) https://doi.org/10.1021/jf505316a
- Boue SM, Shih BY, Burow ME, Eggleston G, Lingle S, Pan YB, Daigle K, Bhatnagar D. Postharvest accumulation of resveratrol and piceatannol in sugarcane with enhanced antioxidant activity. J. Agr. Food Chem. 61: 8412-8419 (2013) https://doi.org/10.1021/jf4020087
- Sales JM, Resurreccion AVA. Maximising resveratrol and piceid contents in UV and ultrasound treated peanuts. Food Chem. 117: 674-680 (2009) https://doi.org/10.1016/j.foodchem.2009.04.075
- Bonghi C, Rizzini FM, Gambuti A, Moio L, Chkaiban L, Tonutti P. Chkaiban L. Phenol compound metabolism and gene expression in the skin of wine grape (Vitis vinifera L.) berries subjected to partial postharvest dehydration. Postharvest Biol. Tec. 67: 102-109 (2012) https://doi.org/10.1016/j.postharvbio.2012.01.002
- Brinker AM, Seigler DS. Time course of piceatannol accumulation in resistant and susceptible sugarcane stalks after inoculation with Colletotrichum falcatum. Physiol. Mol. Plant P. 42: 169-176 (1993) https://doi.org/10.1006/pmpp.1993.1015