DOI QR코드

DOI QR Code

Changes in chemical properties, antioxidant activities, and cytotoxicity of turmeric pigments by thermal process

가열처리에 의한 심황색소의 화학적 특성, 산화방지 활성 및 세포독성 변화

  • Song, Eiseul (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Kang, Smee (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Hong, Jungil (Division of Applied Food System, College of Natural Science, Seoul Women's University)
  • 송이슬 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 강스미 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 홍정일 (서울여자대학교 자연과학대학 식품응용시스템학부)
  • Received : 2017.08.28
  • Accepted : 2017.10.10
  • Published : 2018.02.28

Abstract

Turmeric oleoresin, extracted from the rhizome of Curcuma longa L., is a widely-used natural food colorant. Curcuminoids, the major pigments in turmeric, which include curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BMC), possess various physiological activities. In the present study, changes in the chemical properties, antioxidant activities, and cytotoxicity of turmeric pigments upon heating were investigated. Color intensity of turmeric was significantly reduced after heating. Residual levels of curcumin, DMC, and BMC after 15 min of heating at $95^{\circ}C$ were 11.9, 37.4, and 77.3% respectively. Scavenging activities of turmeric against 2,2'-azobis-3-ethyl-benz-thiazoline-6-sulfonic acid (ABTS), 2,2-azobis (2-amidinopropane) hydrochloride (AAPH) peroxyl radicals, and nitrite were significantly enhanced after heating, while 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity remained unaffected. Generation of $H_2O_2$ from turmeric was increased via thermal decomposition. Cytotoxicity of turmeric pigments against colon cancer and normal intestinal cells was reduced significantly after heating. The results indicate that thermal processing affects chemical properties and bioactivities of turmeric pigments. These effects should be considered during the processing of foods containing turmeric pigments.

본 연구에서는 식품의 가공이나 조리 시 빈번히 적용되는 가열처리에 의한 심황색소의 화학안정성, 산화방지활성 및 세포독성의 변화를 조사하였다. $95^{\circ}C$에서 각 시간별로 가열처리한 심황색소는 가열시간이 증가할수록 발색도가 감소하였으며, 형광도는 초기 가열 시에 증가하다 감소하는 양상을 보였다. HPLC 분석 결과 3종의 쿠쿠미노이드 중 쿠쿠민이 가열처리에 가장 민감하였으며 BMC가 가장 안정하였다. 가열 처리 후의 심황색소에 의해 ABTS 라디칼, AAPH peroxyl 라디칼 및 아질산염 소거활성이 증가하였으나, DPPH 라디칼 소거활성에는 변화가 없었다. 가열처리 시간의 증가에 따라 심황색소로 부터의 $H_2O_2$ 생성능이 증가한 반면, 정상장관계 세포 INT 407 및 대장암 세포 HCT 116를 대상으로 한 세포독성평가에서는 가열처리 후 심황색소의 활성이 유의적으로 약화되었다. 본 연구결과는 다양한 가공식품에 첨가되는 심황색소의 화학안정성 및 생리활성이 가열처리에 의해 크게 영향을 받으며, 생리활성 증진을 목적으로 첨가되는 심황색소에 이러한 가열처리 효과가 고려되어야 함을 시사한다.

Keywords

References

  1. Li S, Yuan W, Deng G, Wang P, Yang P, Aggarwal B. Chemical composition and product quality control of turmeric (Curcuma longa L.) Pharm. Crops. 2: 28-54 (2011)
  2. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. In: Anonymous the molecular targets and therapeutic uses of curcumin in health and disease, Springer, pp 1-75 (2007)
  3. Govindarajan VS. Turmeric chemistry, technology and quality. Crit. Rev. Food Sci. 12: 199-301 (1980) https://doi.org/10.1080/10408398009527278
  4. Masuda T, Hidaka K, Shinohara A, Maekawa T, Takeda Y, Yamaguchi H. Chemical studies on antioxidant mechanism of curcuminoid: analysis of radical reaction products from curcumin. J. Agr. Food Chem. 47: 71-77 (1999) https://doi.org/10.1021/jf9805348
  5. Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Vol. 595, pp. 105-125. In: The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Aggarwal BB, Surh YJ, Shishodia S (eds). Springer US, New York, NY, USA (2007)
  6. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 23: 363-398 (2003)
  7. Hamaguchi T, Ono K, Yamada M. Review: Curcumin and Alzheimer's disease. CNS Neurosci. Ther. 16: 285-297 (2010) https://doi.org/10.1111/j.1755-5949.2010.00147.x
  8. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen to clinic. Biochem. Pharmacol. 75: 787-809 (2008) https://doi.org/10.1016/j.bcp.2007.08.016
  9. Guo LY, Cai XF, Lee JJ, Kang SS, Shin EM, Zhou HY, Jung JW, Kim YS. Comparison of suppressive effects of demethoxycurcumin and bisdemethoxycurcumin on expressions of inflammatory mediators in vitro and in vivo. Arch. Pharm. Res. 31: 490-496 (2008) https://doi.org/10.1007/s12272-001-1183-8
  10. Ko YC, Lien JC, Liu HC, Hsu SC, Ji BC, Yang MD, Hsu WH, Chung JG. Demethoxycurcumin induces the apoptosis of human lung cancer NCI-H460 cells through the mitochondrial-dependent pathway. Oncol. Rep. 33: 2429-2437 (2015) https://doi.org/10.3892/or.2015.3865
  11. Yang ST, Huang AC, Tang NY, Liu HC, Liao CL, Ji BC, Chou YC, Yang MD, Lu HF, Chung JG. Bisdemethoxycurcumininduced S phase arrest through the inhibition of cyclin A and E and induction of apoptosis via endoplasmic reticulum stress and mitochondria-dependent pathways in human lung cancer NCI H460 cells. Environ. Toxicol. 31: 1899-1908 (2016) https://doi.org/10.1002/tox.22191
  12. Govindarajan VS, Stahl WH. Turmeric-chemistry, technology, and quality. Crit. Rev. Food. Sci. 12: 199-301 (1980) https://doi.org/10.1080/10408398009527278
  13. Tonnesen HH, Karlsen J, Henegouwen GB. Studies on curcumin and curcuminoids VIII. photochemical stability of curcumin. Z. Lebensm. Unters. Forsch. 183: 116-122 (1986) https://doi.org/10.1007/BF01041928
  14. Lee B, Kim D, Kang S, Kim M, Hong J. Changes in the chemical stability and antioxidant activities of curcuminoids under various processing conditions. Korean J. Food Sci. Technol. 42: 97-102 (2010)
  15. Esatbeyoglu T, Ulbrich K, Rehberg C, Rohn S, Rimbach G. Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol. Food Funct. 6:887-893 (2015) https://doi.org/10.1039/C4FO00790E
  16. Prathapan A, Lukhman M, Arumughan C, Sundaresan A, Raghu KG. Effect of heat treatment on curcuminoid, colour value, and total polyphenols of fresh turmeric rhizome. Int. J. Food Sci. Tech. 44: 1438-1444 (2009) https://doi.org/10.1111/j.1365-2621.2009.01976.x
  17. Jiang ZY, Woollard ACS, Wolff SP. Lipid hydroperoxide measurement by oxidation of $Fe^{2+}$ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids 26: 853-856 (1991) https://doi.org/10.1007/BF02536169
  18. Chignell CF, Bilskj P, Reszka KJ, Motten AG, Sik RH, Dahl TA. Spectral and photochemical properties of curcumin. Photochem. Photobiol 59: 295-302 (1994) https://doi.org/10.1111/j.1751-1097.1994.tb05037.x
  19. Peyrat-Maillard MN, Cuvelier M, Berset C. Antioxidant activity of phenolic compounds in 2, 2-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: Synergistic and antagonistic effects. J. Am. Oil Chem. Soc. 80: 1007-1012 (2003) https://doi.org/10.1007/s11746-003-0812-z
  20. Jung YN, Kang S, Lee BH, Kim JH, Hong J. Changes in the chemical properties and anti-oxidant activities of curcumin by microwave radiation. Food Sci. Biotechnol. 25:1449-1455 (2016) https://doi.org/10.1007/s10068-016-0225-1
  21. Apak R, zyrek M, Gl K, apanolu E. Antioxidant activity/capacity measurement. Classification, physicochemical principles, mechanisms, and electron transfer (ET) based assays. J. Agr. Food Chem. 64: 997-1027 (2016) https://doi.org/10.1021/acs.jafc.5b04739
  22. Finotti E, Di Majo D. Influence of solvents on the antioxidant property of flavonoids. Mol. Nutr. Food Res. 47: 186-187 (2003)
  23. Siddiqui NA. Evaluation of thermo sensitivity of curcumin and quantification of ferulic acid and vanillin as degradation products by a validated HPTLC method. Pak. J. Pharm. Sci. 28: 299-305 (2015)
  24. Wang Y, Pan M, Cheng A, Lin L, Ho Y, Hsieh C, Lin J. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. 15: 1867-1876 (1997) https://doi.org/10.1016/S0731-7085(96)02024-9
  25. Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch. Biochem. Biophys. 501:65-72 (2010) https://doi.org/10.1016/j.abb.2010.06.013
  26. Roos B, Duthie GG. Role of dietary pro-oxidants in the maintenance of health and resilience to oxidative stress. Mol. Nutr. Food Res. 59: 1229-1248 (2015) https://doi.org/10.1002/mnfr.201400568
  27. Woo J, Kim Y, Choi Y, Kim D, Lee K, Bae JH, Min DS, Chang J, Jeong Y, Lee YH. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-X L and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis 24: 1199-1208 (2003) https://doi.org/10.1093/carcin/bgg082
  28. Su CC, Lin JG, Li TM, Chung JG, Yang JS, Ip SW, Lin WC, Chen GW. Curcumin induced apoptosis of human colon cancer colo 205 cells through the production of ROS, $Ca^{2+}$, and the activation of caspase-3. Anticancer Res. 26: 4379-4389 (2006)
  29. Hong J. Curcumin-induced growth inhibitory effects on HeLa cells altered by antioxidant modulators, Food Sci. Biotechnol. 16: 1029-1034 (2007)