DOI QR코드

DOI QR Code

다양한 형상의 밀폐된 구획에서 최대 열발생률 예측을 위한 상관식 검토

A Correlation Study for the Prediction of the Maximum Heat Release Rate in Closed-Compartments of Various Configurations

  • 윤홍석 (대전대학교 대학원 방재학과) ;
  • 황철홍 (대전대학교 소방방재학과)
  • Yun, Hong-Seok (Department of Disaster Prevention, Graduate School, Daejeon University) ;
  • Hwang, Cheol-Hong (Department of Fire and Disaster Prevention, Daejeon University)
  • 투고 : 2018.01.18
  • 심사 : 2018.01.30
  • 발행 : 2018.02.28

초록

다양한 밀폐 구획을 대상으로 내부 체적 및 화재성장률의 변화에 따라 최대 열발생률의 예측이 가능한 상관식이 수치적으로 검토되었다. 구획의 체적은 ISO 9705 화재실의 바닥면 형상을 기준으로 길이 비의 변화를 통해 조절되었으며, 이때 천장 높이는 2.4 m로 고정되었다. 주요 결론으로서, 천장 높이의 변화가 고려된 선행연구 결과와의 비교를 통해, 천장 높이의 변화가 최대 열발생률에 미치는 영향이 검토되었다. 또한 밀폐된 구획에서 천장 높이 변화와 관계없이 최대 열발생률을 예측할 수 있는 보다 일반화된 상관식이 제안되었다. 이 상관식은 수치결과와 비교할 때 다양한 화재성장률에 대하여 평균적으로 7%, 그리고 최대 19%의 오차를 갖는 것으로 확인되었다. 마지막으로 국내 성능위주설계에 적용된 5개의 대표적인 구획을 대상으로, 제안된 상관식의 적용 가능성이 검토되었다. 본 연구결과는 화재시뮬레이션에서 요구되는 입력정보 뿐만 아니라, 밀폐된 공간에서 플래시오버에 의해 야기될 수 있는 최대 열발생률의 예측에 관한 유용한 정보를 제공할 것으로 기대된다.

In a closed-compartment with various configurations, the correlation that can predict the maximum heat release rate (HRR) with the changes in internal volume and fire growth rate was investigated numerically. The volume of the compartment was controlled by varying the length ratio based on the bottom surface shape of the ISO 9705 fire room, where the ceiling height was fixed to 2.4 m. As a main result, the effect of a change in ceiling height on the maximum HRR was examined by a comparison with a previous study that considered the change in ceiling height. In addition, a more generalized correlation equation was proposed that could predict the maximum HRR in closed-compartments regardless of the changes in ceiling height. This correlation had an average error of 7% and a maximum error of 19% for various fire growth rates when compared with the numerical results. Finally, the applicability of the proposed correlation to representative fire compartments applied to the domestic performance-based design (PBD) was examined. These results are expected to provide useful information on predicting the maximum HRR caused by flashover in closed-compartments as well as the input information required in a fire simulation.

키워드

과제정보

연구 과제 주관 기관 : 소방청

참고문헌

  1. V. Babrauskas and R. D. Peacock, "Heat Release Rate: The Single Most Important Variable in Fire Hazard", Fire Safety Journal, Vol. 18, pp. 255-272 (1992).
  2. A. P. Mouritz, Z. Mathys and A. G. Gibson, "Heat Release of Polymer Composites in Fire", Composites: Part A, Vol. 37, pp. 1040-1054 (2006). https://doi.org/10.1016/j.compositesa.2005.01.030
  3. J. H. Cho, C. H. Hwang, J. Kim and S. Lee, "Sensitivity Analysis of FDS Results for the Input Uncertainty of Fire Heat Release Rate", Journal of the Korean Society of Safety, Vol. 31, No. 1, pp. 25-32 (2016). https://doi.org/10.14346/JKOSOS.2016.31.1.025
  4. S. H. An, S. Y. Mun, I. H. Ryu, J. H. Choi and C. H. Hwang, "Analysis on the Implementation Status of Domestic PBD (Performance Based Design) - Focusing on the Fire Scenario and Simulation", Journal of the Korean Society of Safety, Vol. 32, No. 5, pp. 32-40 (2017). https://doi.org/10.14346/JKOSOS.2017.32.5.32
  5. Y. H. Yoo, O. S. Kweon and H. Y. Kim, "The Real Scale Fire Test for Fire Safety in Apartment Housing", Journal of Korean Institute Fire Science & Engineering, Vol. 23, No. 5, pp. 57-65 (2009).
  6. S. C. Kim, "A Study on Fire Characteristics of Solid Combustibles Materials Based on Real Scale Fire Test", Journal of Korean Institute Fire Science & Engineering, Vol. 25, No. 5, pp. 62-68 (2011).
  7. H. J. Kim, I. K. Kwon, O. S. Kweon, H. Y. Kim and S. U. Chae, "The Real Fire Test in Bedroom for the Performance Based Fire Design", Fire Science and Engineering, Vol. 27, No. 6, pp. 32-37 (2013). https://doi.org/10.7731/KIFSE.2013.27.6.032
  8. D. G. Nam and C. H. Hwang, "Measurements of the Heat Release Rate and Fire Growth Rate of Combustibles for the Performance-Based Design - Focusing on the Combustibles in Residential and Office Spaces", Fire Science and Engineering, Vol. 31, No. 2, pp. 29-36 (2017). https://doi.org/10.7731/KIFSE.2017.31.2.029
  9. I. R. Thomas, K. A. Moinuddin and I. D. Bennetts, "The Effect of Quantity and Location on Small Enclosure Fires", Journal of Fire Protection Engineering, Vol. 17, pp. 85-102 (2007). https://doi.org/10.1177/1042391506064908
  10. C. H. Hwang, A. Lock, M. Bundy, E. Johnsson and G. H. Ko, "Effects of Fuel Location and Distribution on Full-Scale Underventilated Compartment Fires", Journal of Fire Science, Vol. 29, pp. 21-52 (2011). https://doi.org/10.1177/0734904110372119
  11. I. R. Thomas and I. D. Bennetts, "Fires in Enclosures with Single Ventilation Openings - Comparison of Long and Wide Enclosures", Fire Safety Science - Proceedings of the Sixth International Symposium, pp. 941-952 (2000).
  12. I. R. Thomas, K. Moinuddin and I. Bennetts, "Fires Development in a Deep Enclosure," Fire Safety Science - Proceedings of the 8th International Symposium, International Association for Fire Safety Science, pp. 1277-1299 (2005).
  13. C. H. Hwang, C. H. Park, G. H. Ko and A. Lock, "An Experimental Study on Relationship between Global Equivalence Ratio and Fire Characteristics in Full-Scale Compartment Fire", Journal of the Korean Society of Combustion, Vol. 15, No. 3, pp. 32-39 (2010).
  14. S. Y. Mun, C. H. Park, C. H. Hwang and S. H. Park, "Effects of the Geometry and Location of an Vertical Opening on the Fire Characteristics in the Under-ventilated Compartment Fire", Journal of Korean Institute Fire Science & Engineering, Vol. 27, No. 3, pp. 20-29 (2013).
  15. H. S. Yun, D. G. Nam and C. H. Hwang, "A Numerical Study on the Effect of Volume Change in a Closed Compartment on Maximum Heat Release Rate", Journal of the Korean Society of Safety, Vol. 31, No. 5, pp. 19-27 (2017).
  16. J. Wahlqvist and P. V. Hees, "Influence of the Built Environment on Design Fires", Case Studies in Fire Safety, Vol. 5, pp. 20-33 (2016). https://doi.org/10.1016/j.csfs.2015.12.001
  17. J. Liu, J. Wang and R. Yuen, "Experimental Study of the Influence of Varying Ceiling Height on the Heat Release Rate of a Pool Fire", Institute of Physics Conference Series : Earth and Environmental Science, Vol. 67, Paper No. 012010 (2017).
  18. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk and K. Overholt, "Fire Dynamic Simulator; User's Guide", NIST SP 1019, Sixth Edition, NIST, Gaithersburg, MD, p. 24 (2017).
  19. NFSC 501A, "National Fire Safety Code for Design Guidelines for Smoke Control System of Special Evacuation Stairwell and Lobby", National Fire Agency, p. 61 (2015).
  20. NFPA-92B, "Smoke Management Systems in Malls, Atria, and Large Spaces", p. 42 (1991).
  21. U.S. NRC and EPRI, "Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications, Volume 7: Fire Dynamics Simulator", NUREG-1824 and EPRI 1011999, Final Report, p. 6-4 (2007).
  22. K. McGrattan, J. Floyd, G. Forney, H. Baum and S. Hostikka, "Improved Radiation and Combustion Routines for a Large Eddy Simulation Fire Model", Fire Safety Science - Proceedings of the Seventh International Symposium, Worcester, MA, pp. 827-838 (2003).