DOI QR코드

DOI QR Code

대역저지 특성을 갖는 초광대역 안테나 설계 및 구현

Design and Implementation of UWB Antenna with Band Rejection Characteristics

  • 양운근 (인천대학교 전자공학과) ;
  • 남태현 (인천대학교 전자공학과) ;
  • 유재성 (인천대학교 전자공학과) ;
  • 오희운 (인천대학교 전자공학과)
  • Yang, Woon Geun (Department of Electronics Engineering, Incheon National University) ;
  • Nam, Tae Hyeon (Department of Electronics Engineering, Incheon National University) ;
  • Yu, Jae Seong (Department of Electronics Engineering, Incheon National University) ;
  • Oh, Hee Oun (Department of Electronics Engineering, Incheon National University)
  • 투고 : 2018.02.01
  • 심사 : 2018.02.19
  • 발행 : 2018.02.28

초록

본 논문에서는 대역저지 특성을 갖는 초광대역(UWB: ultra wideband) 안테나를 설계 및 구현하였다. 제안된 안테나는 슬롯을 가진 평면 방사 패치와 패치 아래 양쪽과 뒷면 접지면으로 구성되어있다. 평면 방사 패치 내에 있는 슬롯들로써 대역을 저지하며 U-모양의 슬롯은 WLAN(wireless local area network, 5.15~5.825 GHz) 대역을, n-모양의 슬롯은 X-Band(7.25~8.395 GHz) 대역을 저지하는데 각각 기여한다. 그리고 저지 대역을 제외한 UWB(3.10~10.60 GHz) 전체 대역의 전압정재파비(VSWR: voltage standing wave ratio)를 2.0 이하로 만족시키기 위해 평면 방사 패치와 접지면에 변형을 주었다. 제안된 안테나의 설계과정과 전산모의실험에는 Ansoft사의 HFSS(high frequency structure simulator)를 사용하였다. 전산모의실험된 안테나는 3.10~10.60 GHz에서 저지 대역인 5.15~5.94 GHz, 7.02~8.45 GHz를 제외한 구간에서 전압정재파비는 2.0 이하를 만족하며, 구현된 안테나의 측정 결과는 저지 대역인 5.12~5.95 GHz, 7.20~8.58 GHz를 제외한 구간에서 전압정재파비는 2.0 이하를 만족한다.

In this paper, we designed and implemented an ultra wideband(UWB) antenna with band rejection characteristics. The proposed antenna consists of a planar radiation patch with slots and ground planes on both sides. Due to the slots in the radiation patch, the antenna shows band rejection characteristics. U-type slot contributes for wireless local area network(WLAN, 5.15~5.825 GHz) band rejection and n-type slot contributes for X-Band(7.25~8.395 GHz) band rejection. To make voltage standing wave ratio(VSWR) less than 2.0 for UWB frequency band except rejection bands, the shapes of planar radiation patch and ground plane was modified. The Ansoft 's high frequency structure simulator(HFSS) was used for the design process and simulations of the proposed antenna. The simulated antenna showed VSWR less than 2.0 for all UWB band excepts for dual rejection bands of 5.15 ~ 5.94 GHz and 7.02 ~ 8.45 GHz. And measured VSWR for the implemented antenna is less than 2.0 for all UWB band of 3.10~10.60 GHz excluding dual rejection bands of 5.12~5.95 GHz and 7.20~8.58 GHz.

키워드

참고문헌

  1. P. H. Jung, Y. M. Cho, U. Lee, H. J. Oh, and W. G. Yang, "Design and implementation of multi slots UWB antenna using CPW feeding method," in Proceeding of 2014 KIEES Summer Conference, Vol. 2, No. 1, p.314, 21-23, Aug. 2014.
  2. Y. H. Lee, "UWB antenna technology," Journal of Korea Information and Communications, 20, pp. 22-30, 2003.
  3. S. Nikolaou and M. A. B. Abbasi, "Design and development of a compact UWB monopole antenna with easily-controllable return loss," IEEE Trans. on antenna and propagation, Vol. 65, No. 4, pp.2063-2067, Apr. 2017. https://doi.org/10.1109/TAP.2017.2670322
  4. B. Allen, "Ultra wideband: applications, technology and future perspectives," in International Workshop On Convergent Technologies(IWCT), 2005.
  5. X. Gong, "Design of a microstrip-fed hexagonal shape UWB antenna with triple notched bands," in Progress In Electromagnetics Research C, Vol. 62, pp. 77-87, 2016.
  6. J. Kazim, A. Bibi, M. Rauf, M. Tariq, and Owais, "A compact planar dual band-notched monopole antenna for UWB application,"Microwave Opt. Technol. Lett, 56, pp. 668-672, 2014.
  7. A. Syed and R. W. Aldhaheri, "A very xompact and low profile UWB planar antenna with WLAN band rejection," Hindawi Publishing Corporation, The Scientific World Journal, Article ID 3560938, 7 pages, Vol. 2016.
  8. H. S. Choi, K. Choi, and H. Y. Hwang, "A UWB antenna with the adjustable second rejection band using a SIR," The Journal of Korean Instituteof Electromagnetic Engineering and Science, Vol. 23, No. 9, pp. 1019-1024, Sep. 2012. https://doi.org/10.5515/KJKIEES.2012.23.9.1019
  9. Y. Sung, "Triple band-notched UWB planar monopole antenna using a modified h-shaped resonator," IEEE Trans. on antenna and propagation, Vol. 61, No. 2, pp. 953-957, Feb. 2013. https://doi.org/10.1109/TAP.2012.2223434