DOI QR코드

DOI QR Code

네트워크형 복층 도로터널 확폭구간에서의 충격손실 계수 결정을 위한 수치해석 연구

A Numerical Analysis on the Determination of Shock Loss Coefficient at Flared Intersection of Network-type Double-deck Road Tunnel

  • 박요한 (인하대학교 에너지자원공학과) ;
  • 이승준 (인하대학교 에너지자원공학과) ;
  • 김진 (인하대학교 에너지자원공학과)
  • Park, Yo Han (Deptment of Energy Resources Engineering, Inha University) ;
  • Lee, Seung Jun (Deptment of Energy Resources Engineering, Inha University) ;
  • Kim, Jin (Deptment of Energy Resources Engineering, Inha University)
  • 투고 : 2018.02.12
  • 심사 : 2018.02.23
  • 발행 : 2018.02.28

초록

본 연구는 전세계적으로 활발하게 기술 개발 중인 네트워크형 복층 도로터널에서의 환기 설계를 위해 새롭게 요구되는 설계인자를 분석한다. 분류 및 합류부 지점에 존재하는 확폭구간에서 단면적의 변화에 따라 발생하는 충격손실계수를 결정하기 위해 전산유체역학(CFD)를 통한 수치해석 연구를 진행하였다. 수치해석에 사용된 모델은 실제 스케일을 반영하였고 이전의 선행 연구의 충격손실계수 값과의 비교분석을 통해 그 값의 신뢰성을 확보하였다. 수치해석 연구의 결과로 단면적비의 변화에 따른 충격손실계수 값을 도출해냈고 급확대부와 급축소부 두 경우 모두 이전의 선행 연구에서 제시된 충격손실계수 값보다 높게 계산되어졌다. 이는 네트워크형 복층 도로터널의 기하학적 구조의 특성이 충격손실계수에 미치는 영향이 크다고 판단된다. 따라서 본 연구의 결과 값은 앞으로 네트워크형 복층 도로터널의 환기 설계에 있어 좀 더 정확한 설계에 도움이 될 것으로 기대된다.

The purpose of this study is to analyze ventilation design factor for network-type double-deck road tunnel that have been developed actively around the world. A numerical analysis was carried out through computational fluid dynamics (CFD) to derive shock loss coefficient that occurs due to the change in cross sectional area at both merging section and diverging section. The model used for the numerical analysis is real-scale model and the reliability of the result is secured by comparing with the coefficient of the previous studies. As a result of this study, shock loss coefficient was calculated depending on the change in cross-sectional area ratio and was higher than the result of previous studies in case of both merging section and diverging section. It is considered that the characteristics of the geometrical structure of network-type double-deck road tunnel have a great impact on shock loss coefficient. Therefore, the result of this study is expected to be helpful for more accurate ventilation design of network-type double-deck road tunnel.

키워드

참고문헌

  1. Bullen, P. R., Cheeseman, D. J., Hussain, L. A., & Ruffellt, A. E. (1987). The determination of pipe contraction pressure loss coefficients for incompressible turbulent flow. International journal of heat and fluid flow, 8(2), 111-118. https://doi.org/10.1016/0142-727X(87)90008-7
  2. ESDU 72011. (2007). Flow through a sudden enlargement of area in a duct (Issued June 1972).
  3. ESDU TN 06023. (2007). CFD validation studies for pressure loss and flow characteristics in sudden contractions (Issued June 2006).
  4. ESDU 05024. (2008). Flow through sudden contractions of duct area: pressure losses and flow characteristics. (Issued December 2005).
  5. Fester, V., Mbiya, B., & Slatter, P. (2008). Energy losses of non-Newtonian fluids in sudden pipe contractions. Chemical Engineering Journal, 145(1), 57-63. https://doi.org/10.1016/j.cej.2008.03.003
  6. Idelchik, I. E., & Fried, E. (1986). Handbook of hydraulic resistance.
  7. Kim, H. J., & Park, J. P. (2010). Assessment of CFD Estimation Capability for the Local Loss Coefficients of Sudden Contraction and Expansion. Applied Chemistry for Engineering, 21(3), 258-264.
  8. Koh, I. S,. (2010). [Theme2] Seoul U-Smartway Underpass Plan. Monthly KOTI Magazine on Transport, 15-22.
  9. Koh, Y. H,. (2000). A Study on the Flow Loss for Sudden Expansion and Contraction Part of Circular Pipe Nozzle. Journal of the Korean Society of Marine Engineering, 24(6), 89-89.
  10. Korea Expressway Corporation. (2012). Design Criteria for Highway Tunnel Ventilation Facilities Revision 38-43.
  11. Lee, C. W,. Lee S. H,. Choi, S. I,. Baek, D. H,. & Moon, S. K. (1996) Simulation Modeling of the Vehicle Tunnel Ventilation System Using Network Theory. Korean Society of Civil Engineers, 2, 387-390.
  12. Lee, H. S., Hong, K. H., Choi, C. R., Kang, M. K., Lim, J. B., & Mun, H. P. (2012). Experimental study of improvement of ventilation efficiency at intersection in network-form underground road tunnel. Journal of Korean Tunnelling and Underground Space Association, 14(2), 107-116. https://doi.org/10.9711/KTAJ.2012.14.2.107
  13. McPherson, M. J. (2012). Subsurface ventilation and environmental engineering. Springer Science & Business Media.
  14. Miller, D. S. (1971). Internal flow: a guide to losses in pipe and duct systems. In Internal flow: a guide to losses in pipe and duct systems. British Hydromechanics Research Association.
  15. Ministry of Land, Infrastructure, and Transport. (2016). Urban Area Underpass Design Guidelines 167-177.
  16. Ministry of Land, Transport and Maritime Affairs. (2013). Highway Capacity Manual(KHCM) 78-112.
  17. Park, S. H., Lee, S. J., Park, Y. H., Kim, S. M., Roh, J. H., Yoo, Y. H., & Kim, J. (2016). Design Factors for the Ventilation System of a Networked Double-deck Tunnel. Tunnel and Underground Space, 26(1), 32-45. https://doi.org/10.7474/TUS.2016.26.1.032
  18. Park, S. H., Roh, J. H., & Kim, J. (2017). Numerical Analysis on the Estimation of Shock Loss for the Ventilation of Network-type Double-deck Road Tunnel. Tunnel and Underground Space, 27(3), 132-145. https://doi.org/10.7474/TUS.2017.27.3.132
  19. Peric, M., & Ferguson, S. (2012). The advantage of polyhedral meshes. Dynamics, 24, 45.
  20. Roh, J. H., Lee, S. J., & Kim, J. (2017). A Study on the Determination of Shock Loss Coefficient on the Branch in the Double-deck Road Tunnel for Small Car. Tunnel and Underground Space, 27(1), 50-57. https://doi.org/10.7474/TUS.2017.27.1.050
  21. Ryu, J. O., Kim, J. S., & Rie, D. H. (2016). Numerical Study on the Supply and Exhaust Port Size and Fire Management Method in the Semi-transverse Ventilation System for Road Tunnel. Fire Science and Engineering, 30(2), 68-74. https://doi.org/10.7731/KIFSE.2016.30.2.068
  22. Sánchez, F. P., Machuca, J. L. N., Franco, A. T., & Morales, R. E. (2010). EXPERIMENTAL AND NUMERICAL STUDY OF TURBULENT NEWTONIAN FLOW THROUGH AN AXISYMMETRIC SUDDEN CONTRACTION.