DOI QR코드

DOI QR Code

맹갱도 굴진 작업공간내 방재팬의 화재연 배기효율에 관한 현장실험 및 CFD 연구

Experimental and CFD Study on the Exhaust Efficiency of a Smoke Control Fan in Blind Entry Development Sites

  • 응우엔반득 (동아대학교 에너지자원공학과) ;
  • 김두영 (동아대학교 에너지자원공학과) ;
  • 허원호 (동아대학교 에너지자원공학과) ;
  • 이창우 (동아대학교 에너지자원공학과)
  • Nguyen, Vanduc (Department of Energy and Mineral Resources Engineering, Dong-A University) ;
  • Kim, Dooyoung (Department of Energy and Mineral Resources Engineering, Dong-A University) ;
  • Hur, Wonho (Department of Energy and Mineral Resources Engineering, Dong-A University) ;
  • Lee, Changwoo (Department of Energy and Mineral Resources Engineering, Dong-A University)
  • 투고 : 2018.01.13
  • 심사 : 2018.02.02
  • 발행 : 2018.02.28

초록

갱내환기는 지하광산 안전성에 직접적인 영향을 미친다. 갱내환기는 정상시에는 작업공간내 유해물질의 희석을 위한 충분한 량의 급기를 통하여 쾌적한 환경을 유지하는 것이 목적이나 갱내화재와 같은 비상시에는 화재의 확산제어와 구조활동의 지원을 목적으로 한다. 본 연구를 통하여 작업공간 국부환기 뿐만 아니라 화재연 제어를 위한 방재팬을 개발하였다. 방재팬은 풍관없이 가동되며 작업공간내 유해물질의 희석 및 배기 기능을 갖추고 있으며 동시에 화재시 화재연 배기를 목적으로 한다. 본 논문은 개발된 방재팬과 기존 국부팬의 연결 운전을 통한 화재연의 배기효율 연구가 목적이다. 일련의 현장 실험 및 CFD분석을 통하여 맹갱도 작업공간내 방재팬의 화재연 배기효율을 분석하였으며 이를 위하여 SF6 추적가스를 이용한 공간내 기류 및 유해물질 유동을 검토하였다. 대단면 석회석 광산에서 수행한 현장실험과 CFD분석 결과를 비교한 결과, 갱내에서 가장 리스크가 큰 맹갱도 굴진 작업장에서 기존 국부팬 1대와 조합 운전하는 경우, 팬의 설치 위치 및 운전모드의 적절한 선택시에 효율적인 화재연 배기가 가능함을 보였다. 또한 CFD분석을 통하여 벤츄리효과에 의한 배기효율도 확인할 수 있었다. 팬 설치 위치 및 운전모드가 배기효율을 결정하는 가장 중요한 변수임을 보였다.

The ventilation system plays a crucial role in underground mine safety. The main objective of the ventilation system is to supply sufficient air to dilute the contaminated air at working places and consequently provide tenable environment during the normal operation, while it also should be capable of controlling the fire propagation and facilitate rescue conditions in case of fire in mines. In this study, a smoke control fan was developed for the auxiliary ventilation as well as the fire smoke exhaust. It works as a free-standing auxiliary fan without tubing to dilute or exhaust the contaminated air from the working places. At the same time, it can be employed to extract the fire smoke. This paper aims to examine the smoke control efficiency of the fan when combined with the current ventilation system in mines. A series of the site experiments and numerical simulations were made to evaluate the fan performance in blind entry development sites. The tracer gas method with SF6 was applied to investigate the contaminant behavior at the study sites. The results of the site study at a large-opening limestone mine were compared with the CFD analysis results with respect to the airflow pattern and the gas concentration. This study shows that in blind development entry, the most polluted and risky place, the smoke fan can exhaust toxic gases or fire smoke effectively if it is properly combined with an additional common auxiliary fan. The venturi effect for smoke exhaust from the blind entry was also observed by the numerical analysis. The overall smoke control efficiency was found to be dependent on the fan location and operating method.

키워드

참고문헌

  1. ANSYS, Inc., 2017, FLUENT User's Guide, Version 17.0, Canonsburg, PA, USA: ANSYS, Inc.
  2. Bickel, KL., 1987. Analysis of diesel-powered mine equipment. Proceedings of the Bureau of Mines Technology Transfer Seminar: Diesels in Underground Mines. Information Circular 9141, US Bureau of Mines.
  3. Chekan, G. J. et al., 2006. Impact of fan type for reducing respirable dust at an underground limestone crushing facility. In 11th US/North American Mine Ventilation Symposium 2006: Proceedings of the 11th US/North American Mine Ventilation Symposium, 5-7 June 2006, PA, USA (p. 203). CRC Press.
  4. De Rosa M.I., 2004. Analysis of mine fires for all US metal/non-metal mining categories, 1990-2001, NIOSH.
  5. Edwards J.C. et al., 1999. CFD analysis of mine fire smoke spread and reverse flow conditions, NIOSH.
  6. Edwards J.C. et al., 2006. Experimental and modelling investigation of the effect of ventilation on smoke rollback in a mine entry, NIOSH.
  7. FOSTER - MILLER associates, Inc., 1980. Foster - Miller's development of dry coal feed systems, Waltham, Massachusetts, US.
  8. Goodman G.V. et al., 1992. Jet fan ventilation in very deep cuts: a preliminary analysis. Vol. 9399. US Department of the Interior, US Bureau of Mines.
  9. GRAMKO annual report 2005, SVEMIN, Sweden, 2005.
  10. Grau III, R. H. et al., 2002. Practical techniques to improve the air quality in underground stone mines, Ninth North American/US Mine Ventilation Symposium, Kingston, Ontario, Canada, pp. 123-129.
  11. Grau III, R.H. et al., 2006. Maximizing the ventilation of large-opening mines, In Proceedings of the 11th US/North American Mine Ventilation Symposium, University Park, PA, USA, pp. 53-59.
  12. Graul III, R. H., and Krog, R, 2009. Using mine planning and other techniques to improve ventilation in large-opening mines. Mining Engineering, 61(2), pp. 46.
  13. Lee, C. W and Nguyen, V.D., 2015. Development of a Low-Pressure Auxiliary Fan for Local Large-opening Limestone Mines, Journal of Korean Society for Rock Mechanics, Tunnel and Underground Space, 25(6), pp. 543-555.
  14. Lee, C.W and Nguyen, V.D, 2016. A study on the fire propagation characteristics in large-opening multi-level limestone mines in Korea. Geosystem Engineering, 19(6), pp. 317-336.
  15. Park et al, 2017. A Comparative Study on the Auxiliary Fan Pressure and the Ventilation Efficiency in Large-opening Limestone Mine Airways, Journal of Korean Society for Rock Mechanics, Tunnel and Underground Space, 27(01), pp. 1-11.
  16. Thyer A.M., 2002. Development of a fire and explosion risk assessment methodology for underground mines, Health and Safety Laboratory, UK.
  17. Yuan L. et al., 2004. The effects of ventilation and preburn time on water mist extinguishing of diesel fuel pool fires, Journal of Fire Sciences, vol. 22, pp. 379-404.
  18. Yuan L. et al., 2007. Experimental study of flame spread on conveyor belts in a small-scale tunnel, NIOSH.
  19. Yuan L., 2006. Ignition of hydraulic fluid sprays by open flames and hot surfaces, NIOSH.
  20. Zhou F. et al., 2005. Backdraft in descensionally ventilated mine fire, Zhou F. et al. (2005), Journal of Fire Sciences, vol. 23, pp. 261-271.