DOI QR코드

DOI QR Code

Zinc upregulates bone-specific transcription factor Runx2 expression via BMP-2 signaling and Smad-1 phosphorylation in osteoblasts

  • Cho, Young-Eun (Department of Food Science and Nutrition, Andong National University) ;
  • Kwun, In-Sook (Department of Food Science and Nutrition, Andong National University)
  • Received : 2018.01.22
  • Accepted : 2018.02.12
  • Published : 2018.02.28

Abstract

Purpose: Runx2 (runt-related transcription factor 2), a bone-specific transcription factor, is a key regulator of osteoblast differentiation and its expression is induced by the activation of BMP-2 signaling. This study examined whether zinc modulates BMP-2 signaling and therefore stimulates Runx2 and osteoblast differentiation gene expression. Methods: Two osteoblastic MC3T3-E1 cell lines (subclones 4 as a high osteoblast differentiation and subclone 24 as a low osteoblastic differentiation) were cultured in an osteogenic medium (OSM) as the normal control, Zn-($1{\mu}M$ Zn) or Zn+($15{\mu}M$ Zn) for 24 h. The genes and proteins for BMP-2 signaling (BMP-2, Smad-1/p-Smad-1), transcription factors (Runx2, osterix), and osteoblast differentiation marker proteins were assessed. Results: In both cell lines, BMP-2 mRAN and protein expression and extracellular BMP-2 secretion all decreased in Zn-. The expression of Smad-1 (downstream regulator of BMP-2 signaling) and p-Smad-1 (phosphorylated Smad-1) also downregulated in Zn-. Furthermore, the expression of the bone-specific transcription factors, Runx2 and osterix, decreased in Zn-, which might be due to the decreased BMP-2 expression and Smad-1 activation (p-Smad-1) by Zn-, because Runx2 and osterix both are downstream in BMP-2 signaling. Bone marker gene expression, such as alkaline phosphatase (ALP), collagen type I (COLI), osteocalcin, and osteopontin were also downregulated in Zn-. Conclusion: The results suggest that a zinc deficiency in osteoblasts suppresses the BMP-2 signaling pathway via the suppression of Smad-1 activation, and this suppressed BMP-2 signaling can cause poor osteoblast differentiation.

Keywords

References

  1. Coleman JE. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 1992; 61: 897-946. https://doi.org/10.1146/annurev.bi.61.070192.004341
  2. Maret W. Zinc in cellular regulation: the nature and significance of "Zinc Signals". Int J Mol Sci 2017; 18(11): 2285-2296. https://doi.org/10.3390/ijms18112285
  3. Tuerk MJ, Fazel N. Zinc deficiency. Curr Opin Gastroenterol 2009; 25(2): 136-143. https://doi.org/10.1097/MOG.0b013e328321b395
  4. Chabosseau P, Rutter GA. Zinc and diabetes. Arch Biochem Biophys 2016; 611: 79-85. https://doi.org/10.1016/j.abb.2016.05.022
  5. Kim JH, Jeon J, Shin M, Won Y, Lee M, Kwak JS, Lee G, Rhee J, Ryu JH, Chun CH, Chun JS. Regulation of the catabolic cascade in osteoarthritis by the Zinc-ZIP8-MTF1 Axis. Cell 2014; 156(4): 730-743. https://doi.org/10.1016/j.cell.2014.01.007
  6. da Cunha Ferreira RM, Marquiegui IM, Elizaga IV. Teratogenicity of zinc deficiency in the rat: study of the fetal skeleton. Teratology 1989; 39(2): 181-194. https://doi.org/10.1002/tera.1420390210
  7. Hsieh HS, Navia JM. Zinc deficiency and bone formation in guinea pig alveolar implants. J Nutr 1980; 110(8): 1581-1588. https://doi.org/10.1093/jn/110.8.1581
  8. Hurley LS. Teratogenic aspects of manganese, zinc, and copper nutrition. Physiol Rev 1981; 61(2): 249-295. https://doi.org/10.1152/physrev.1981.61.2.249
  9. Leek JC, Vogler JB, Gershwin ME, Golub MS, Hurley LS, Hendrickx AG. Studies of marginal zinc deprivation in rhesus monkeys. V. Fetal and infant skeletal effects. Am J Clin Nutr 1984; 40(6): 1203-1212. https://doi.org/10.1093/ajcn/40.6.1203
  10. Oner G, Bhaumick B, Bala RM. Effect of zinc deficiency on serum somatomedin levels and skeletal growth in young rats. Endocrinology 1984; 114(5): 1860-1863. https://doi.org/10.1210/endo-114-5-1860
  11. Holloway WR, Collier FM, Herbst RE, Hodge JM, Nicholson GC. Osteoblast-mediated effects of zinc on isolated rat osteoclasts: inhibition of bone resorption and enhancement of osteoclast number. Bone 1996; 19(2): 137-142. https://doi.org/10.1016/S8756-3282(96)90759-0
  12. Togari A, Arakawa S, Arai M, Matsumoto S. Alteration of in vitro bone metabolism and tooth formation by zinc. Gen Pharmacol 1993; 24(5): 1133-1140. https://doi.org/10.1016/0306-3623(93)90360-A
  13. Alcantara EH, Lomeda RA, Feldmann J, Nixon GF, Beattie JH, Kwun IS. Zinc deprivation inhibits extracellular matrix calcification through decreased synthesis of matrix proteins in osteoblasts. Mol Nutr Food Res 2011; 55(10): 1552-1560. https://doi.org/10.1002/mnfr.201000659
  14. Cho YE, Lomeda RA, Ryu SH, Lee JH, Beattie JH, Kwun IS. Cellular Zn depletion by metal ion chelators (TPEN, DTPA and chelex resin) and its application to osteoblastic MC3T3-E1 cells. Nutr Res Pract 2007; 1(1): 29-35. https://doi.org/10.4162/nrp.2007.1.1.29
  15. Cho YE, Lomeda RA, Ryu SH, Sohn HY, Shin HI, Beattie JH, Kwun IS. Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats. Nutr Res Pract 2007; 1(2): 113-119. https://doi.org/10.4162/nrp.2007.1.2.113
  16. Kim JT, Baek SH, Lee SH, Park EK, Kim EC, Kwun IS, Shin HI. Zinc-deficient diet decreases fetal long bone growth through decreased bone matrix formation in mice. J Med Food 2009; 12(1): 118-123. https://doi.org/10.1089/jmf.2007.0647
  17. Kwun IS, Cho YE, Lomeda RA, Shin HI, Choi JY, Kang YH, Beattie JH. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 2010; 46(3): 732-741. https://doi.org/10.1016/j.bone.2009.11.003
  18. Seo HJ, Cho YE, Kim T, Shin HI, Kwun IS. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract 2010; 4(5): 356-361. https://doi.org/10.4162/nrp.2010.4.5.356
  19. Yamaguchi M, Goto M, Uchiyama S, Nakagawa T. Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol Cell Biochem 2008; 312(1-2): 157-166. https://doi.org/10.1007/s11010-008-9731-7
  20. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/ Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997; 89(5): 747-754. https://doi.org/10.1016/S0092-8674(00)80257-3
  21. Lee MH, Kim YJ, Kim HJ, Park HD, Kang AR, Kyung HM, Sung JH, Wozney JM, Kim HJ, Ryoo HM. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem 2003; 278(36): 34387-34394. https://doi.org/10.1074/jbc.M211386200
  22. Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM. BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun 2003; 309(3): 689-694. https://doi.org/10.1016/j.bbrc.2003.08.058
  23. Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene 2006; 366(1): 51-57. https://doi.org/10.1016/j.gene.2005.10.011
  24. Suzuki T, Katsumata S, Matsuzaki H, Suzuki K. A short-term zinc-deficient diet decreases bone formation through downregulated BMP2 in rat bone. Biosci Biotechnol Biochem 2016; 80(7): 1433-1435. https://doi.org/10.1080/09168451.2016.1153955
  25. Murshed M, Harmey D, Millan JS, McKee MD, Karsenty G. Unique coexpression in osteblasts of boadly expressed genes accounts for the apatial restrictionof ECM minralization to bone. Genes Dev 2005; 19(9): 1093-1104. https://doi.org/10.1101/gad.1276205
  26. Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis 2002; 8(3): 147-159. https://doi.org/10.1034/j.1601-0825.2002.01829.x
  27. Komori T. Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol 2010; 658: 43-49.
  28. Golub EE, Harrison G, Taylor AG, Camper S, Shapiro IM. The role of alkaline phosphatase in cartilage mineralization. Bone Miner 1992; 17(2): 273-278. https://doi.org/10.1016/0169-6009(92)90750-8
  29. Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch 2010; 77(1): 4-12. https://doi.org/10.1272/jnms.77.4
  30. Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem 2010; 338(1-2): 241-254. https://doi.org/10.1007/s11010-009-0358-0

Cited by

  1. Cellular zinc deficiency inhibits the mineralized nodule formation and downregulates bone-specific gene expression in osteoblastic MC3T3-E1 cells vol.51, pp.5, 2018, https://doi.org/10.4163/jnh.2018.51.5.379
  2. (licorice) extracts increase cell proliferation and bone marker enzyme alkaline phosphatase activity in osteoblastic MC3T3-E1 cells vol.51, pp.4, 2018, https://doi.org/10.4163/jnh.2018.51.4.316
  3. Glycyrrhiza uralensis (licorice) extracts increase cell proliferation and bone marker enzyme alkaline phosphatase activity in osteoblastic MC3T3-E1 cells vol.51, pp.4, 2018, https://doi.org/10.4163/jnh.2018.51.3.316
  4. Dual Ion Releasing Nanoparticles for Modulating Osteogenic Cellular Microenvironment of Human Mesenchymal Stem Cells vol.14, pp.2, 2018, https://doi.org/10.3390/ma14020412
  5. Improved osteogenesis in rat femur segmental defects treated with human allograft and zinc adjuvants vol.246, pp.16, 2021, https://doi.org/10.1177/15353702211019008
  6. Effects of Vanillic Acid on the Differentiation and Mineralization of Osteoblastic MC3T3-E1 Cells vol.50, pp.8, 2018, https://doi.org/10.3746/jkfn.2021.50.8.774
  7. Interactions between cadmium and zinc on gene expression pattern of differentiation markers in MC3T3-E1 cell line vol.51, pp.9, 2018, https://doi.org/10.1080/00498254.2021.1963881
  8. Serial administration of rhBMP‐2 and alendronate enhances the differentiation of osteoblasts vol.24, pp.10, 2018, https://doi.org/10.1111/1756-185x.14189
  9. Regeneration of Bone Defects in a Rabbit Femoral Osteonecrosis Model Using 3D-Printed Poly (Epsilon-Caprolactone)/Nanoparticulate Willemite Composite Scaffolds vol.22, pp.19, 2018, https://doi.org/10.3390/ijms221910332
  10. High throughput synthesis and screening of zinc-doped biphasic calcium phosphate for bone regeneration vol.25, pp.None, 2018, https://doi.org/10.1016/j.apmt.2021.101225