DOI QR코드

DOI QR Code

Effects of luteolin on chemical induced colon carcinogenesis in high fat diet-fed obese mouse

고지방식이를 급여한 비만 마우스에서 luteolin이 화학적으로 유도한 대장암 발생에 미치는 영향

  • Park, Jeong-Eun (Department of Food Science and Nutrition, Daegu Catholic University) ;
  • Kim, Eunjung (Department of Food Science and Nutrition, Daegu Catholic University)
  • 박정은 (대구가톨릭대학교 식품영양학과) ;
  • 김은정 (대구가톨릭대학교 식품영양학과)
  • Received : 2018.02.02
  • Accepted : 2018.02.19
  • Published : 2018.02.28

Abstract

Purpose: Colorectal cancer, which is one of the most commonly diagnosed cancers in developing and developed countries, is highly associated with obesity. The association is largely attributed to changes to western style diets in those countries containing high-fat and high-energy. Luteolin (LUT) is a known potent inhibitor of inflammation, obesity, and cancer. In this study, we investigated the effects of LUT on chemical-induced colon carcinogenesis in high fat diet (HFD)-fed obese mice. Methods: Five-week-old male C57BL/6 mice received a single intraperitoneal injection of azoxymethane (AOM) at a dose of 12.5 mg/kg body weight. Mice were then divided into four groups (n = 10) that received one of the following diets for 11 weeks after the AOM injection: normal diet (ND); HFD; HFD with 0.0025% LUT (HFD LL); HFD with 0.005% LUT (HFD HL). One week after AOM injection, animals received 1~2% dextran sodium sulfate in their drinking water over three cycles consisting of five consecutive days each that were separated by 16 days. Results: Body weight, ratio of colon weight/length, and tumor multiplicity increased significantly in the HFD group compared to the ND group. Luteolin supplementation of the HFD significantly reduced the ratio of colon weight/length and colon tumors, but not body weight. The levels of plasma $TNF-{\alpha}$ and colonic expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 protein increased in response to HFD, but were suppressed by LUT supplementation. Immunohistochemistry analysis also showed that iNOS expression was decreased by LUT. Conclusion: Consumption of LUT may reduce the risk of obesity-associated colorectal cancer by suppression of colonic inflammation.

본 연구는 LUT이 고지방식이로 비만이 유도된 C57BL/6 마우스의 대장암 발생에 미치는 영향을 분석하기 위해 실험동물을 각 10마리씩 정상식이 (ND)군, 고지방식이 (HFD)군, HFD + 0.0025% LUT 보충 (HFD LL)군, 그리고 HFD + 0.005% LUT 보충 (HFD HL)군의 4군으로 분류하였다. 각 실험군은 AOM을 1회 복강 주사하고 AOM 투여 1주일 후 총 3 cycle의 1 ~ 2% 농도의 DSS를 음용수로 공급하여 대장암을 유발하였다. 실험식이는 AOM 발암시점부터 총 11주간 급여하였다. 연구결과, 군간 식이섭취량의 차이는 없었으나 HFD 급여군에서 체중과 식이효율의 유의적인 증가가 나타났으며 HFD군과 비교했을 때 LUT 보충에 따른 체중의 변화는 없었다. 그러나 LUT 보충은 ND군에 비해 HFD군에서 나타난 대장 무게/길이 비, 대장종양 수, 혈장 $TNF-{\alpha}$ 농도, 대장 iNOS와 COX-2 발현을 유의적으로 감소시켰으며 그 효과는 HFD HL군이 HFD LL군보다 높았다. 이러한 결과는 체중조절과는 별개로 LUT이 고지방식이에 의한 대장의 염증반응 억제를 통하여 비만과 연관된 대장암 발생을 억제할 수 있음을 제시하며 향후 비만에 의한 인슐린 저항성 및 adipokine 분비, 그리고 장내 균총 변화에 따른 대장 점막세포 증식과 대장암 발생에 LUT이 어떤 영향을 미치는지에 대한 연구를 더 깊이 있게 수행한다면 비만으로 인한 대장암 발생에 LUT이 효과적인 화학적 예방 (chemoprevention)제로 활용될 수 있을 것으로 기대한다.

Keywords

References

  1. World Cancer Research Fund; American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, D.C.: WCRF/AICR; 2007.
  2. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg 2009; 22(4): 191-197. https://doi.org/10.1055/s-0029-1242458
  3. Boyle P, Langman JS. ABC of colorectal cancer: epidemiology. BMJ 2000; 321(7264): 805-808. https://doi.org/10.1136/bmj.321.7264.805
  4. Young GP, Le Leu RK. Preventing cancer: dietary lifestyle or clinical intervention? Asia Pac J Clin Nutr 2002; 11 Suppl 3: S618-S631. https://doi.org/10.1046/j.0964-7058.2002.00337.x
  5. Na SY, Myung SJ. Obesity and colorectal cancer. Korean J Gastroenterol 2012; 59(1): 16-26. https://doi.org/10.4166/kjg.2012.59.1.16
  6. Padidar S, Farquharson AJ, Williams LM, Kearney R, Arthur JR, Drew JE. High-fat diet alters gene expression in the liver and colon: links to increased development of aberrant crypt foci. Dig Dis Sci 2012; 57(7): 1866-1874. https://doi.org/10.1007/s10620-012-2092-9
  7. Sung MK, Yeon JY, Park SY, Park JH, Choi MS. Obesityinduced metabolic stresses in breast and colon cancer. Ann N Y Acad Sci 2011; 1229: 61-68.
  8. Schlesinger S, Lieb W, Koch M, Fedirko V, Dahm CC, Pischon T, Nothlings U, Boeing H, Aleksandrova K. Body weight gain and risk of colorectal cancer: a systematic review and meta-analysis of observational studies. Obes Rev 2015; 16(7): 607-619. https://doi.org/10.1111/obr.12286
  9. Liu Z, Brooks RS, Ciappio ED, Kim SJ, Crott JW, Bennett G, Greenberg AS, Mason JB. Diet-induced obesity elevates colonic TNF-${\alpha}$ in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer. J Nutr Biochem 2012; 23(10): 1207-1213. https://doi.org/10.1016/j.jnutbio.2011.07.002
  10. Jochem C, Leitzmann M. Obesity and colorectal cancer. Recent Results Cancer Res 2016; 208: 17-41.
  11. Lopez-Lazaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 2009; 9(1): 31-59. https://doi.org/10.2174/138955709787001712
  12. Ashokkumar P, Sudhandiran G. Protective role of luteolin on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis. Biomed Pharmacother 2008; 62(9): 590-597. https://doi.org/10.1016/j.biopha.2008.06.031
  13. Nishitani Y, Yamamoto K, Yoshida M, Azuma T, Kanazawa K, Hashimoto T, Mizuno M. Intestinal anti-inflammatory activity of luteolin: role of the aglycone in NF-${\kappa}B$ inactivation in macrophages co-cultured with intestinal epithelial cells. Biofactors 2013; 39(5): 522-533. https://doi.org/10.1002/biof.1091
  14. Salib JY, Michael HN, Eskande EF. Anti-diabetic properties of flavonoid compounds isolated from Hyphaene thebaica epicarp on alloxan induced diabetic rats. Pharmacognosy Res 2013; 5(1): 22-29. https://doi.org/10.4103/0974-8490.105644
  15. Pandurangan AK, Esa NM. Luteolin, a bioflavonoid inhibits colorectal cancer through modulation of multiple signaling pathways: a review. Asian Pac J Cancer Prev 2014; 15(14): 5501-5508. https://doi.org/10.7314/APJCP.2014.15.14.5501
  16. Zhang X, Zhang QX, Wang X, Zhang L, Qu W, Bao B, Liu CA, Liu J. Dietary luteolin activates browning and thermogenesis in mice through an $AMPK/PGC1{\alpha}$ pathway-mediated mechanism. Int J Obes (Lond) 2016; 40(12): 1841-1849. https://doi.org/10.1038/ijo.2016.108
  17. Kwon EY, Jung UJ, Park T, Yun JW, Choi MS. Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity. Diabetes 2015; 64(5): 1658-1669. https://doi.org/10.2337/db14-0631
  18. Zhang L, Han YJ, Zhang X, Wang X, Bao B, Qu W, Liu J. Luteolin reduces obesity-associated insulin resistance in mice by activating $AMPK{\alpha}$1 signalling in adipose tissue macrophages. Diabetologia 2016; 59(10): 2219-2228.
  19. Ding L, Jin D, Chen X. Luteolin enhances insulin sensitivity via activation of $PPAR{\gamma}$ transcriptional activity in adipocytes. J Nutr Biochem 2010; 21(10): 941-947. https://doi.org/10.1016/j.jnutbio.2009.07.009
  20. Nepali S, Son JS, Poudel B, Lee JH, Lee YM, Kim DK. Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-${\kappa}B$/mitogen-activated protein kinases pathway. Pharmacogn Mag 2015; 11(43): 627-635. https://doi.org/10.4103/0973-1296.160470
  21. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 1993; 69(2): 238-249.
  22. Cooper HS, Murthy S, Kido K, Yoshitake H, Flanigan A. Dysplasia and cancer in the dextran sulfate sodium mouse colitis model. Relevance to colitis-associated neoplasia in the human: a study of histopathology, B-catenin and p53 expression and the role of inflammation. Carcinogenesis 2000; 21(4): 757-768. https://doi.org/10.1093/carcin/21.4.757
  23. Tanaka T, Kohno H, Suzuki R, Hata K, Sugie S, Niho N, Sakano K, Takahashi M, Wakabayashi K. Dextran sodium sulfate strongly promotes colorectal carcinogenesis in ApcMin/+ mice: inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms. Int J Cancer 2006; 118(1): 25-34. https://doi.org/10.1002/ijc.21282
  24. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 1998; 115(1): 182-205. https://doi.org/10.1016/S0016-5085(98)70381-6
  25. Hendrickson BA, Gokhale R, Cho JH. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev 2002; 15(1): 79-94. https://doi.org/10.1128/CMR.15.1.79-94.2002
  26. Renehan AG, Soerjomataram I, Tyson M, Egger M, Zwahlen M, Coebergh JW, Buchan I. Incident cancer burden attributable to excess body mass index in 30 European countries. Int J Cancer 2010; 126(3): 692-702. https://doi.org/10.1002/ijc.24803
  27. Moghaddam AA, Woodward M, Huxley R. Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Biomarkers Prev 2007; 16(12): 2533- 2547. https://doi.org/10.1158/1055-9965.EPI-07-0708
  28. Martinez ME, Giovannucci E, Spiegelman D, Hunter DJ, Willett WC, Colditz GA. Leisure-time physical activity, body size, and colon cancer in women. Nurses' Health Study Research Group. J Natl Cancer Inst 1997; 89(13): 948-955. https://doi.org/10.1093/jnci/89.13.948
  29. Larsson SC, Wolk A. Obesity and colon and rectal cancer risk: a meta-analysis of prospective studies. Am J Clin Nutr 2007; 86(3): 556-565. https://doi.org/10.1093/ajcn/86.3.556
  30. Baltgalvis KA, Berger FG, Peña MM, Davis JM, Carson JA. The interaction of a high-fat diet and regular moderate intensity exercise on intestinal polyp development in Apc Min/+ mice. Cancer Prev Res (Phila) 2009; 2(7): 641-649. https://doi.org/10.1158/1940-6207.CAPR-09-0017
  31. Tang FY, Pai MH, Chiang EP. Consumption of high-fat diet induces tumor progression and epithelial-mesenchymal transition of colorectal cancer in a mouse xenograft model. J Nutr Biochem 2012; 23(10): 1302-1313. https://doi.org/10.1016/j.jnutbio.2011.07.011
  32. Reddy BS. Types and amount of dietary fat and colon cancer risk: Prevention by omega-3 fatty acid-rich diets. Environ Health Prev Med 2002; 7(3): 95-102. https://doi.org/10.1265/ehpm.2002.95
  33. Dai W, Liu T, Wang Q, Rao CV, Reddy BS. Down-regulation of PLK3 gene expression by types and amount of dietary fat in rat colon tumors. Int J Oncol 2002; 20(1): 121-126.
  34. van Beelen VA, Spenkelink B, Mooibroek H, Sijtsma L, Bosch D, Rietjens IM, Alink GM. An n-3 PUFA-rich microalgal oil diet protects to a similar extent as a fish oil-rich diet against AOM-induced colonic aberrant crypt foci in F344 rats. Food Chem Toxicol 2009; 47(2): 316-320. https://doi.org/10.1016/j.fct.2008.11.014
  35. Kang KA, Piao MJ, Ryu YS, Hyun YJ, Park JE, Shilnikova K, Zhen AX, Kang HK, Koh YS, Jeong YJ, Hyun JW. Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int J Oncol 2017; 51(4): 1169-1178. https://doi.org/10.3892/ijo.2017.4091
  36. Pandurangan AK, Dharmalingam P, Sadagopan SK, Ramar M, Munusamy A, Ganapasam S. Luteolin induces growth arrest in colon cancer cells through involvement of $Wnt/{\beta}$-catenin/$GSK-3{\beta}$ signaling. J Environ Pathol Toxicol Oncol 2013; 32(2): 131-139. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2013007522
  37. Lim DY, Jeong Y, Tyner AL, Park JH. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. Am J Physiol Gastrointest Liver Physiol 2007; 292(1): G66-G75. https://doi.org/10.1152/ajpgi.00248.2006
  38. Ramos AA, Pereira-Wilson C, Collins AR. Protective effects of ursolic acid and luteolin against oxidative DNA damage include enhancement of DNA repair in Caco-2 cells. Mutat Res 2010; 692(1-2): 6-11. https://doi.org/10.1016/j.mrfmmm.2010.07.004
  39. Pandurangan AK, Ananda Sadagopan SK, Dharmalingam P, Ganapasam S. Luteolin, a bioflavonoid, attenuates azoxymethaneinduced effects on mitochondrial enzymes in BALB/c mice. Asian Pac J Cancer Prev 2014; 14(11): 6669-6672. https://doi.org/10.7314/APJCP.2013.14.11.6669
  40. Pandurangan AK, Dharmalingam P, Sadagopan SK, Ganapasam S. Luteolin inhibits matrix metalloproteinase 9 and 2 in azoxymethane-induced colon carcinogenesis. Hum Exp Toxicol 2014; 33(11): 1176-1185. https://doi.org/10.1177/0960327114522502
  41. Rankin JW, Turpyn AD. Low carbohydrate, high fat diet increases C-reactive protein during weight loss. J Am Coll Nutr 2007; 26(2): 163-169. https://doi.org/10.1080/07315724.2007.10719598
  42. Kim IW, Myung SJ, Do MY, Ryu YM, Kim MJ, Do EJ, Park S, Yoon SM, Ye BD, Byeon JS, Yang SK, Kim JH. Westernstyle diets induce macrophage infiltration and contribute to colitis-associated carcinogenesis. J Gastroenterol Hepatol 2010; 25(11): 1785-1794. https://doi.org/10.1111/j.1440-1746.2010.06332.x
  43. Clapper ML, Cooper HS, Chang WC. Dextran sulfate sodiuminduced colitis-associated neoplasia: a promising model for the development of chemopreventive interventions. Acta Pharmacol Sin 2007; 28(9): 1450-1459. https://doi.org/10.1111/j.1745-7254.2007.00695.x
  44. Park YH, Kim N, Shim YK, Choi YJ, Nam RH, Choi YJ, Ham MH, Suh JH, Lee SM, Lee CM, Yoon H, Lee HS, Lee DH. Adequate dextran sodium sulfate-induced colitis model in mice and effective outcome measurement method. J Cancer Prev 2015; 20(4): 260-267.
  45. Randhawa PK, Singh K, Singh N, Jaggi AS. A review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol 2014; 18(4): 279-288. https://doi.org/10.4196/kjpp.2014.18.4.279
  46. Takahashi M, Mutoh M, Kawamori T, Sugimura T, Wakabayashi K. Altered expression of beta-catenin, inducible nitric oxide synthase and cyclooxygenase-2 in azoxymethaneinduced rat colon carcinogenesis. Carcinogenesis 2000; 21(7): 1319-1327. https://doi.org/10.1093/carcin/21.7.1319
  47. Ahn B, Ohshima H. Suppression of intestinal polyposis in Apc(Min/+) mice by inhibiting nitric oxide production. Cancer Res 2001; 61(23): 8357-8360.
  48. Yagihashi N, Kasajima H, Sugai S, Matsumoto K, Ebina Y, Morita T, Murakami T, Yagihashi S. Increased in situ expression of nitric oxide synthase in human colorectal cancer. Virchows Arch 2000; 436(2): 109-114. https://doi.org/10.1007/PL00008208
  49. Turini ME, DuBois RN. Cyclooxygenase-2: a therapeutic target. Annu Rev Med 2002; 53: 35-57.