DOI QR코드

DOI QR Code

술폰화된 폴리스티렌 이오노머 용액과 멤브레인의 유변학적, 물리적 특성

Rheological and Physical Properties of Sulfonated Polystyrene Ionomer Solutions and the Membranes

  • Chae, Dong Wook (Department of Textile Engineering, Kyungpook National University) ;
  • Choi, Kyung Rak (Department of Organic and Nano Engineering, Hanyang University) ;
  • Kim, Byoung Chul (Department of Organic and Nano Engineering, Hanyang University)
  • 투고 : 2018.01.13
  • 심사 : 2018.02.21
  • 발행 : 2018.02.28

초록

The rheological properties of sulfonated polystyrene (SPS) ionomer solutions were found to be significantly affected by solvent polarity, counterion, sulfonation level, and temperature. In the dilute concentration regime, the reduced viscosity (${\eta}_{red}$) of SPS solutions in the dimethyl sulfoxide (DMSO), which is a polar solvent, increased with decreasing concentration, whereas opposite effects were observed in low-polarity solvent tetrahydrofuran (THF). H-SPS solutions in THF showed typical shear-thinning behavior over all the measured frequencies, while solutions in DMSO showed shear-thickening behavior at low shear rates, followed by shear-thinning behavior at higher shear rates. These different behaviors might result from differences in polymer-solvent interactions and the chain conformation. SPS solutions in DMSO containing monovalent ions ($Na^+$) exhibited higher dynamic viscosity values than those with divalent ions ($Ca^{2+}$, $Mg^{2+}$) because of the different degrees of chain expansion. In DMSO, the dynamic viscosity increased with temperature, regardless of the sulfonation level and counterion. Both the proton conductivity and methanol permeability of the SPS membranes increased with increasing sulfonation level and exhibited an abrupt increase between 10 and 15 mol%, indicative of a percolation threshold.

키워드

참고문헌

  1. J. Song, H. Lee, M. Choo, J. Park, and H. Kim, "Ionomer- Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes", Sci. Rep., 2015, 5, Article Number: 14458.
  2. T. Mochizuki, M. Uchida, H. Uchida, M. Watanabe, and K. Miyatake, "Double-Layer Ionomer Membrane for Improving Fuel Cell Performance", ACS Appl. Mater. Interfaces, 2014, 6, 13894-13899. https://doi.org/10.1021/am503295y
  3. P. Staiti and F. Lufrano, "Nafion and Fumapem Polymer Electrolytes for the Development of Advanced Solid-State Supercapacitors", Electrochim. Acta, 2016, 206, 432-439. https://doi.org/10.1016/j.electacta.2015.11.103
  4. S. Mulijani, K. Dahlan, and A. Wulanawati, "Sulfonated Polystyrene Copolymer: Synthesis, Characterization and Its Application of Membrane for Direct Methanol Fuel Cell (DMFC)", Int. J. Mater. Mech. Manuf., 2014, 2, 36-40.
  5. Y. Chen, P. Chung, and S. Yen, "Conductivity and Methanol Permeability of Sulfonated Polystyrene Membrane with Dispersed Montmorillonite Nanoclay", Polym. Compos., 2012, 33, 2105-2113. https://doi.org/10.1002/pc.22324
  6. B. K. Nath, A. Khan, J. Chutia, A. R. Pal, H. Bailung, N. S. Sarma, D. Chowdhury, and N. C. Adhikary, "Enhancement of Proton Conductivity of Sulfonated Polystyrene Membrane Prepared by Plasma Polymerization Process", Bull. Mater. Sci., 2014, 37, 1613-1624. https://doi.org/10.1007/s12034-014-0717-7
  7. Z.Wang, J. Hu, X.Wu, H. Ye, W. Zhou, Y.Wu, and R. Holze, "A Membrane Based on Sulfonated Polystyrene for a Vanadium Solid-Salt Battery", J. Solid State Electrochem., 2016, 20, 943-948. https://doi.org/10.1007/s10008-015-2931-7
  8. A. M. Young, J. S. Higgins, D. G. Peiffer, and A. R. Rennie, "Effect of Sulfonation Level on the Single-Chain Dimensions and Aggregation of Sulfonated Polystyrene Ionomers in Xylene", Polymer, 1995, 36, 691-697. https://doi.org/10.1016/0032-3861(95)93096-5
  9. J. J. Fitzgerald and R. A. Weiss, "Synthesis, Properties, and Structure of Sulfonated Ionomer", J. Macromol. Sci. Rev. Macromol. Chem. Phys., 1988, C28, 99-185.
  10. H. Guler and L. Aras, "Solution Behavior of Na Sulfonated Polystyrene: Dipole Moment Determinations", Polymer, 1990, 22, 245-248.
  11. M. Hara, P. Jar, and J. A. Sauer, "Dynamic Mechanical Properties of Sulphonated Polystyrene Ionomers", Polymer, 1991, 32, 1622-1626. https://doi.org/10.1016/0032-3861(91)90397-2
  12. D. C. Boris and R. H. Colby, "Rheology of Sulfonated Polystyrene Solutions", Macromolecules, 1998, 31, 5746-5755. https://doi.org/10.1021/ma971884i
  13. W. E. Krause, J. S. Tan, and R. H. Colby, "Semidilute Solution Rheology of Polyelectrolytes with No Added Salt", J. Polym. Sci. Part B: Polym. Phys., 1999, 37, 3429-3437. https://doi.org/10.1002/(SICI)1099-0488(19991215)37:24<3429::AID-POLB5>3.0.CO;2-E
  14. A. Ait-Kadi, P. J. Carreau, and G. J. Chauveteau, "Rheological Properties of Partially Hydrolyzed Polyacrylamide Solutions", J. Rheol., 1987, 31, 537-561. https://doi.org/10.1122/1.549959
  15. H. S. Makowski, R. D. Lundberg, and, G. Singhal, "Flexible Polymeric Compositions Comprising a Normally Plastic Polymer Sulfonated to About 0.2 to About 10 mole % Sulfonate", U.S. Patent, 3,870,841 (1975).
  16. H. Mahdjoub, S. Roualdes, P. Sistat, N. Pradeilles, J. Durand, and G. Pourcelly, "Plasma-Polymerised Proton Conductive Membranes for a Miniaturised PEMFC", Fuel Cells, 2005, 5, 277-286. https://doi.org/10.1002/fuce.200400066
  17. N. Carretta, V. Tricoli, and F. Picchioni, "Ionomeric Membranes Based on Partially Sulfonated Poly(Styrene): Synthesis, Proton Conduction and Methanol Permeation", J. Membr. Sci., 2000, 166, 189-197. https://doi.org/10.1016/S0376-7388(99)00258-6
  18. V. Tricoli, "Proton and Methanol Transport in Poly(perfluorosulfonate) Membranes Containing $Cs^+$ and $H^+$ Cations", J. Electrochem. Soc., 1998, 145, 3798-3801. https://doi.org/10.1149/1.1838876
  19. R. D. Lundberg and R. R. Phillips, "Solution Behavior of Metal Sulfonate Ionomers. II. Effects of Solvents", J. Polym. Sci. Part B: Polym. Phys., 1982, 20, 1143-1154. https://doi.org/10.1002/pol.1982.180200704
  20. R. D. Lundberg and J. S. Makowski, "Solution Behavior of Ionomers. I. Metal Sulfonate Ionomers in Mixed Solvents", J. Polym. Sci. Part B: Polym. Phys., 1980, 18, 1821-1836. https://doi.org/10.1002/pol.1980.180180814
  21. R. D. Lundberg, "Solution Behavior of Ionomers. III. Sulfo- EPDM-Modified Hydrocarbon Solutions", J. Appl. Polym. Sci., 1982, 27, 4623-4635. https://doi.org/10.1002/app.1982.070271209
  22. S. M. Hong, B. C. Kim, S. S. Hwang, and K. U. Kim, "Rheological and Physical Properties of Polyarylate/LCP Blend Systems", Polym. Eng. Sci., 1993, 33, 630-639. https://doi.org/10.1002/pen.760331008
  23. C. D. Han and J. H. Kim, "Rheological Technique for Determining the Order-disorder Transition of Block Copolymers", J. Polym. Sci. Part B: Polym. Phys., 1987, 25, 1741-1764. https://doi.org/10.1002/polb.1987.090250815
  24. C. D. Han and M. S. John, "Correlations of the First Normal Stress Difference with Shear Stress and of the Storage Modulus with Loss Modulus for Homopolymers", J. Appl. Polym. Sci., 1986, 32, 3809-3840. https://doi.org/10.1002/app.1986.070320302