DOI QR코드

DOI QR Code

플라즈마 처리에 의한 폴리비닐리덴플로라이드 나노섬유의 젖음성

Wettability of PVDF Nanofibers by Plasma Treatment

  • 이승훈 ((주)아모그린텍 신소재 연구소) ;
  • 장선호 ((주)아모그린텍 신소재 연구소) ;
  • 소윤미 ((주)아모그린텍 신소재 연구소) ;
  • 이헌수 (한국과학기술연구원 전북분원) ;
  • 양철민 (한국과학기술연구원 전북분원) ;
  • 윤중현 (조선이공대학교 전자과) ;
  • 김찬 ((주)아모그린텍 신소재 연구소)
  • 투고 : 2017.12.09
  • 심사 : 2018.01.05
  • 발행 : 2018.02.28

초록

Poly(vinylidene fluoride) (PVDF) is a critical polymeric material used in the mass production and application of electrospun nanofibers, and is popular due to its excellent properties. However, electrospun PVDF nanofibers are very hydrophobic and possess low surface energies, limiting their broad application. In this work, we investigated practical methods for the hydrophobic surface modification of PVDF nanofibers using four techniques: radio-frequency (RF) and PIN-type atmospheric plasmas, planar inductively coupled plasma (ICP), and planar capacitively coupled plasma (CCP). The use of RF atmospheric plasma was ineffective under the experimental conditions used, while the PIN-type atmospheric plasma efficiently modified PVDF nanofiber surfaces locally. The application of planar CCP to PVDF nanofibers was more effective than planar ICP for the same experimental conditions. In particular, the water contact angles of samples treated with planar CCP for 600 s and 900 s were $25^{\circ}$ and $10^{\circ}$ respectively, and wettability improved. Analysis with FT-IR, XPS, and FE-SEM showed that the surface CF and CH hydrophobic groups were destroyed without damaging the PVDF nanofibers, and hydrophilic species such as C=O, OH, and COOH were formed. As a consequence, quantitative analysis of nanofiber chemical composition is necessary when treated by plasmas, providing insight into the correlation of specific property changes with processing conditions, and indicating precise research results and application examples.

키워드

참고문헌

  1. S. H. Lee, Y. M. So, S. H. Jang, H. J. Shim, and C. Kim, "Feasibility Study of Commercialization of PVDF Nanofiber Containing Plasticizer", Text. Sci. Eng., 2017, 54, 217-223.
  2. K. H. Hwang, B. M. Kwon, and H. S. Byun, "Preparation of PVdF Nanofiber Membranes by Electrospinning and Their Use as Secondary Battery Separators", J. Membr. Sci., 2011, 378, 111-116. https://doi.org/10.1016/j.memsci.2011.06.005
  3. F. L. Huang, Q. Q. Wang, Q. F. Wei, W. D. Gao, H. Y. Shou, and S. D. Jiang, "Dynamic Wettability and Contact Angles of Poly(vinylidene fluoride) Nanofiber Membranes Grafted with Acrylic Acid", Express Polym. Lett., 2010, 4, 551-558. https://doi.org/10.3144/expresspolymlett.2010.69
  4. A. Kaynak, T. Mehmood, X. Dai, K. Magniez, and A. Kouzani, "Study of Radio Frequency Plasma Treatment of PVDF Film Using Ar, O2 and (Ar+O2) Gases for Improved Polypyrrole Adhesion", Materials, 2013, 6, 3482-3493. https://doi.org/10.3390/ma6083482
  5. D. Wu, S. Huang, Z. Xiao, L. Yu, L. Wang, D. Sun, and L. Lin, "Piezoelectric Properties of PVDF Nanofibers via Non-uniform Field Electrospinning", Proceedings of 2014 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), 2014.
  6. Y. J. Cho, C. Kim, J. K. Kook, Y. I. Jeong, J. H. Kim, Y. A. Kim, M. Endo, and C. H. Hwang, "Fabrication of Electrospun PVDF Nanofiber Membrane for Western Blot with High Sensitivity", J. Membr. Sci., 2012, 389, 349-354. https://doi.org/10.1016/j.memsci.2011.10.047
  7. https://shop.pall.com/us/en/laboratory/advanced-materials/liquidfiltration/ polyvinylidene-fluoride-pvdf-membrane-hydrophilic- -zidgri78m6s
  8. G. Krishna Bama, P. Indra Devi, and K. Ramachandran, "Structural and Thermal Properties of PVDF/PVA Blends", J. Mater. Sci., 2009, 44, 1302-1307. https://doi.org/10.1007/s10853-009-3271-8
  9. Q. Zhang, X. Lu, and L. Zhao, "Preparation of Polyvinylidene Fluoride (PVDF) Hollow Fiber Hemodialysis Membranes", Membranes (Basel), 2014, 4, 81-95. https://doi.org/10.3390/membranes4010081
  10. F. J. Wang, C. Q. Li, Z. S. Tan, W. Li, J. F. Ou, and M. S. Xue, "PVDF Surfaces with Stable Superhydrophobicity", Surface Coatings Technol., 2013, 222, 55-61. https://doi.org/10.1016/j.surfcoat.2013.02.004
  11. E. Cho, C. Kim, J. Y. Park, C. H. Hwang, J. H. Kim, Y. A. Kim, M. Endo, D. R. Chang, and J. K. Kook, "Surface Modification of Electrospun Polyvinylidene Fluoride Nanofiber Membrane by Plasma Treatment for Protein Detection", J. Nanosci. Nanotechnol., 2013, 13, 674-677. https://doi.org/10.1166/jnn.2013.6925
  12. D. M. Correia, C. Ribeiro, V. Sencadas, G. Botelho, S. A. C. Carabineiro, J. L. Gomes Ribelles, and S. Lanceros-Mendez, "Influence of Oxygen Plasma Treatment Parameters on Poly(vinylidene fluoride) Electrospun Fiber Mats Wettability", Progress in Organic Coatings, 2015, 85, 151-158. https://doi.org/10.1016/j.porgcoat.2015.03.019
  13. M. P. Silva, C. M. Costa, V. Sencadas, A. I. Paleo, and S. Lanceros-Mendez, "Degradation fo the Dielectric and Piezoelectric Response of ${\beta}$-poly(vinylidene fluoride) after Temperature Annealing", J. Polym. Res., 2011, 18, 1451-1457. https://doi.org/10.1007/s10965-010-9550-x
  14. X. Liu, H. S. Choi, B. R. Park, and H. K. Lee, "Amphiphobicity of Polyvinylidene Fluoride Porous Films after Atmospheric Pressure Plasma Intermittent Etching", Appl. Surf. Sci., 2011, 257, 8828-8835. https://doi.org/10.1016/j.apsusc.2011.04.069
  15. H. S. Yoo, T. G. Kim, and T. G. Park, "Surface-functionalized Electrospun Nanofibers for Tissue Engineering and Drug Delivery", Adv. Drug Deliv. Rev., 2009, 61, 1033-1042. https://doi.org/10.1016/j.addr.2009.07.007
  16. C. Zanden, M. Voinova, I. Gold, D. Morsdorf, I. Bernhardt, and I. Liu, "Surface Characterisation of Oxygen Plasma Treated Electrospun Polyurethane Fibers and Their Interaction with Red Blood Cells", Eur. Polym. J., 2012, 48, 472-482. https://doi.org/10.1016/j.eurpolymj.2012.01.004
  17. S. M. Pawde and K. Deshmukh, "Surface Characterization of Air Plasma Treated Poly Vinylidene Fluoride and Poly Methyl Methacrylate Films", Polym. Eng. Sci., 2009, 49, 808-818. https://doi.org/10.1002/pen.21319