DOI QR코드

DOI QR Code

An Analysis of Anomalous Radon Variation Caused by M5.8 Gyeong-ju Earthquake

규모 5.8 경주 지진에 의한 토양 내 라돈농도의 이상변화 분석

  • Kim, Jin-seop (Department of Geological Sciences, Pusan National University) ;
  • Kim, Minjun (Department of Geological Sciences, Pusan National University) ;
  • Kim, Sunwoong (Department of Geological Sciences, Pusan National University) ;
  • Lee, Hyomin (Department of Geological Sciences, Pusan National University)
  • 김진섭 (부산대학교 지질환경과학과) ;
  • 김민준 (부산대학교 지질환경과학과) ;
  • 김선웅 (부산대학교 지질환경과학과) ;
  • 이효민 (부산대학교 지질환경과학과)
  • Received : 2018.02.21
  • Accepted : 2018.02.27
  • Published : 2018.02.28

Abstract

The radon concentration in soil varies with environmental factors such as atmospheric temperature and pressure, rainfall and soil temperature. The effects of these factors, therefore, should be differentiate in order to analyzed the anomalous radon variation caused by earthquake events. For these reasons, a comparative analysis between the radon variations with environmental factors and the anomalous variations caused by Gyeong-ju earthquake occurred in September 12, 2016 has been conducted. Radon concentration in soil and environmental factors were continuously measured at a monitoring ste located in 58Km away from earthquake epicenter from January 01, 2014 to May 31, 2017. The co-relationships between radon concentration and environmental factors were analyzed. The seasonal average radon concentration(n) and the standard variation(${\rho}$) was calculated, and the regions of ${\pm}1{\rho}$ and ${\pm}2{\rho}$ deviations from seasonal average concentration were investigated to find the anomalous radon variation related to Gyeong-ju earthquake. Earthquake effectiveness and q-factor were also calculated. The radon concentration indicated the seasonal variation pattern, showing high in summer and low in winter. It increases with increasing air temperature and soil temperature, and has the positive co-relationships of $R^2=0.9136$ and $R^2=0.8496$, respectively. The radon concentration decreases with increasing atmospheric pressure, and has the negative co-relationships of $R^2=0.7825$. Four regions of ${\pm}2{\rho}$ deviation from average seasonal concentration (A1: 7/3~7/5, A2: 7/18, A3: 8/4~8/5, A4: 10/17~10/20) were detected before and after Gyeong-ju earthquake. A1, A2, A3 were determined as the anomalous radon variation caused by the earthquake from co-relationship analyses with environmental factors, earthquake effectiveness and q-factor. During the period of anomalous radon variation, correlation coefficients between radon concentration and environmental factors were significantly lowered compared to other periods such as air temperature ($R^2=0.2314$), soil temperature ($R^2=0.1138$) and atmospheric pressure ($R^2=0.0475$). Annual average radon concentration was also highest at 2016, the year of Gyeong-ju earthquake.

토양 내 라돈농도는 주변 환경요인들(대기온도, 대기압, 강수량, 토양온도)에 영향을 받는다. 따라서 지진에 의한 토양 내 라돈이상변화 현상을 분석하기 위해서 이들 요인에 의한 영향과 구분하여야 한다. 이번 연구에서는 환경요인에 의한 토양 내 라돈농도변화와 구분되는 2016년 9월 12일에 발생한 경주지진에 의한 라돈농도의 이상변화현상에 대하여 분석하였다. 진앙지로부터 58Km 떨어진 측정지점에서 2014년 1월 1일부터 2017년 5월 31일까지 토양 내 라돈농도와 환경요인들을 연속 측정하고, 환경요인들과의 상관성을 분석하였다. 경주 지진과 관련된 토양 내 라돈농도의 이상변화를 분석하기 위해, 계절평균농도(n)와 표준편차(${\rho}$)를 계산하고 $n{\pm}1{\rho}$$n{\pm}2{\rho}$의 범위를 벗어나는 구간을 분석하고 Earthquake effectiveness와 q-factor를 계산하였다. 토양 내 라돈농도는 여름철이 높고 겨울철이 낮은 계절변화 양상을 나타내었다. 대기온도와 토양의 온도는 높을수록 토양 내 라돈농도가 높아지는 양의 상관관계(각각 $R^2=0.9136$, $R^2=0.8496$)를 보였으며 대기압은 낮아질수록 토양 내 라돈농도가 높아지는 음의 상관관계($R^2=0.7825$)를 보였다. 경주 지진 전 후에 계절평균농도에서 $2{\rho}$범위를 벗어나는 토양 내 라돈농도의 이상변화현상은 A1(7/3~7/5), A2(7/18), A3(8/4~8/5), A4(10/17~10/20)의 4개 시점에 나타났다. 토양 내 라돈농도와 환경적 요인과의 상관관계와 Earthquake effectiveness와 q-factor를 적용하여 비교분석한 결과, A1, A2, A3 구간에서 나타난 라돈변화가 지진의 영향으로 나타난 이상변화일 것으로 판단된다. 라돈이상변화가 나타난 기간의 라돈농도와 환경요인과 상관계수(대기온도: $R^2=0.2314$, 토양온도: $R^2=0.1138$, 대기압: $R^2=0.0475$)는 다른 기간에 비교하여 매우 낮게 나타났다. 연도별 토양 내 라돈의 연평균농도를 비교한 결과, 경주지진이 발생한 2016년에 가장 높게 나타났다.

Keywords

References

  1. Abumurad, K.M. and Al-Tamimi, M. (2001) Emanation power of radon and its concentration in soil and rocks, Radiation Measurements, v.34, p.423-426. https://doi.org/10.1016/S1350-4487(01)00199-8
  2. Al-Shereideh, S.A., Bataina, B.A. and Ershaidat, N.M. (2006) Seasonal variations and depth dependence of soil radon concentration levels in different geological formations in Deir Abu-Said District, Irbid-Jordan, Radiation Measurements, v.41, p.703-707. https://doi.org/10.1016/j.radmeas.2006.03.004
  3. Bahtijari, M., Stegnar, P., Shemsidini, Z., Ajazaj, H., Halimi, Y., Vaupotic, J. and Kobal, I. (2007) Seasonal variation of indoor air radon concentration in schools in Kosovo, Radiation Measurements, v.42, p.286-289. https://doi.org/10.1016/j.radmeas.2006.09.001
  4. Barillon, R., Ozgumus, A. and Chambaudet, A. (2005) Direct recoil radon emanation from crystalline phases. Influence of moisture content, Geochimica et Cosmochimica Acta, v.69, p.2735-2744. https://doi.org/10.1016/j.gca.2004.11.021
  5. Crockett, R.G.M., Gillmore, G.K., Phillips, P.S., Denman, A.R. and Groves-Kirkby, C.J. (2006) Radon anomalies preceding earthquakes which occurred in the UK, in summer and autumn 2002, Science of the Total Environment, v.364, p.138-148. https://doi.org/10.1016/j.scitotenv.2005.08.003
  6. Dobrovolsky, I.P., Zubkove, S.I. and Miachkin, V.I. (1979) Estimation of the size of earthquake preparation zones, Pageoph, v.117, p.1025-1044I. https://doi.org/10.1007/BF00876083
  7. Garver, E. and Baskaran, M. (2004) Effects of heating on the emanation rates of radon-222 from a suite of natural minerals, Applied Radiation and Isotopes, v.61, p.1477-1485. https://doi.org/10.1016/j.apradiso.2004.03.107
  8. Ghosh, D., Deb, A., Sengupta, R., Patra, K. K. and Bera, S. (2007) Pronounced soil-radon-Precursor of recent earthquakes in India, Radiation Measurements, v.42, p.466-471. https://doi.org/10.1016/j.radmeas.2006.12.008
  9. Ghosh, D., Deb, A. and Sengupta, R., (2009) Anomalous radon emission as precursor of earthquake, Journal of Applied Geophysics, v.69, p.67-81. https://doi.org/10.1016/j.jappgeo.2009.06.001
  10. Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaka, S., Sasaki, Y., Takahashi, M. and Sano, Y. (1995) Ground- water radon anomaly before the Kobe earthquake in Japan, Science, v.269, p.60-61. https://doi.org/10.1126/science.269.5220.60
  11. Iakovleva, V.S. and Ryzhakova, N.K. (2003) Spatial and temporal variations of radon concentration in soil air, Radiation Measurements, v.36, p.385-388. https://doi.org/10.1016/S1350-4487(03)00156-2
  12. Kuo, T., Fan, K., Kuochen, H., Han, Y., Chu, H. and Lee, Y. (2006) Anomalous decrease in groundwater radon before the Taiwan M6.8 Chengkung earthquake, J. Environtal radioactivity, v.88, p.101-106. https://doi.org/10.1016/j.jenvrad.2006.01.005
  13. Kumar, A., Singh, S., Mahajan, S., Bajwa, B. S., Kalia, R. and Dhar, S. (2009) Earthquake precursory studies in Kangra valley of North West Himalayas, India, with special emphases on radon emission, Applied Radiation and Isotopes, v.67, p.1904-1911. https://doi.org/10.1016/j.apradiso.2009.05.016
  14. Lee, H., Moon, K, Kim, J., Ahn, J.K. and Kim, H. (2008) Distribution of some environmental radionuclides in rocks and soils of Geumjeong-Gu area in Busan, Korea, Jour. Petrol. Soc. Korea, v.17, p.179-190.
  15. Miklavcic, I., Radolic, V., Vukovic, B., Poje, M., Varga, M., Stanic, D. and Planinic, J. (2008) Radon anomaly in soil gas as an earthquake precursor, Applied radiation and Isotopes, v.66, p.1459-1466. https://doi.org/10.1016/j.apradiso.2008.03.002
  16. Moon, K., Kim, J. Ahn, J.K., Kim, H. and lee, H. (2009) Long-term Variation of Radon in Granitic Residual Soil at Mt. Guemjeong in Busan, Korea, Jour. petrol. Soc. Korea, v.18, p.279-291.
  17. Plaminic, J., Radolic, V. and Lazanim, Z. (2001) temporal variations of radon in soil related to earthquakes, Applied Radiation and Isotopes, v.55, p.267-272. https://doi.org/10.1016/S0969-8043(00)00387-0
  18. Raddy, D.V., Nagabhushanam, P., Sukhija, G. and Reddy, G.R. (2010) Continuos radon monitoring in soil gas towards earthquake precursory studies in basaltic region, Radiation Measurements, v.45, p.935-942. https://doi.org/10.1016/j.radmeas.2010.05.010
  19. Ramola, R.C., Choubey, V.M., Negi, M.S., Prasad, Y. and Prasad, G. (2008) Radon occurrence in soil-gas and groundwater around an active landslide, Radiation Measurements, v.43, p.98-101. https://doi.org/10.1016/j.radmeas.2007.05.054
  20. Sakoda, A., Hanamoto, K., Ishimori, Y., Nagamatsu, T. and Yamaoka, K. (2008) Effects of some pHysical conditions on leaching rate of radon from radioactive minerals originating from some hot springs, Radiation Measurements, v.43, p.106-110. https://doi.org/10.1016/j.radmeas.2007.07.009
  21. Schery, S.D., Gaeddert, D.H. and Wilkening, M.H. (1984) Factors affecting exhalation of radon from a gravelly sandy loam, J. Geophys Res. v.89, p.7299-8309. https://doi.org/10.1029/JD089iD05p07299
  22. Schumann, R.R, Owen, D.E. and Asher, B.S. (1992) Effects of weather and soil characteristics on temporal variations in soil-gas radon concentrations, Geol. Soc. Am., v.271, p.65-772.
  23. Son, C.M., Lee, S.M., Kim, Y.K., Kim, S.W. and Kim, H.S. (1978) The geological map of Dongrae and Weolnae sheets, Korea Research Institute of Geoscience and Mineral Resources, 27p.
  24. Son, M., Hamm, S., Kim, I., Lee, Y, Jeong, H., Ryu, C. and Song, W. (2002) Fracture Analysis for Evaluation of Groundwater Flow around the Geumjeong Mountain, Busan, Jour. Engineer. Geol., v.12, p.305-317.
  25. Sun, H. and Furbish, D.J. (1995) Moisture content effect on radon emanation in porous media, Journal of Contaminant Hydrology, v.18, p.239-255. https://doi.org/10.1016/0169-7722(95)00002-D
  26. Sundala, A. V., Valenb, V., Soldal, O. and Strand, T. (2008) The influence of meteorological parameters on soil radon levels in permeable glacial sediments, Science of The Total Environment, v.389, p.418-428. https://doi.org/10.1016/j.scitotenv.2007.09.001
  27. Teng, T.L. (1980) Some recent studies on groundwater radon content as an earthquake precursor, Jour. of Geophysical Research, v.85, p.3089-3099. https://doi.org/10.1029/JB085iB06p03089
  28. Yasuoka, Y., Ishii, T., Tokonami, S., Ishikawa, T., Narazaki, Y. and Shinogi, M. (2005) Radon anomaly related to the 1995 Kobe earthquake in Japan, International Congress Series, v.1276, p.426-427. https://doi.org/10.1016/j.ics.2004.10.011
  29. Vizzini, F. and Brai, M. (2012) In-soil radon anomalies as precursors of earthquakes: a case study in the SE slope of Mt. Etna in a period of quite stable weather conditions, J. Environmental Radioactivity, v.113, p.131-141. https://doi.org/10.1016/j.jenvrad.2012.05.027
  30. Zmazek, B., Todorovski, L., Dzeroski, S., Vaupotic, J. and Kobal, I. (2003) Application of decision trees to the analysis of soil radon data for earthquake prediction, Applied Radiation and Isotopes, v.58, p.697-706. https://doi.org/10.1016/S0969-8043(03)00094-0
  31. Zmazek, B., Zivicic, M., Todorovski, L., Dzeroski, S., Vaupotic, J. and Kobal, I. (2005) Radon in soil gas: How to identify anomalies caused by earthquakes, Applied Geochemistry, v.20, p.1106-1119. https://doi.org/10.1016/j.apgeochem.2005.01.014
  32. Washington, J.W. and Rose, A.W. (1992) Temporal variability of radon concentration in the interstitial gas of soils in Pennsylvania, Journal of Geophysical Research, v.97, p.9145-9159. https://doi.org/10.1029/92JB00479
  33. Winkler, R., Ruckerbauer, F. and Bunzl, K. (2001) Radon concentration in soil: a comparison of the variability from different methods, spatial heterogeneity and seasonal flucruations, The Science of the Total Envirnment, v.272, p.273-282. https://doi.org/10.1016/S0048-9697(01)00704-5