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Estimation of heritability and genetic correlation of body weight 
gain and growth curve parameters in Korean native chicken
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Kang Nyeong Heo4, Bo Seok Kang4, and Jun-Heon Lee1,*

Objective: This study estimated the genetic parameters for body weight gain and growth curve 
parameter traits in Korean native chicken (KNC).
Methods: A total of 585 F1 chickens were used along with 88 of their F0 birds. Body weights 
were measured every 2 weeks from hatching to 20 weeks of age to measure weight gain at 2-week 
intervals. For each individual, a logistic growth curve model was fitted to the longitudinal growth 
dataset to obtain three growth curve parameters (α, asymptotic final body weight; β, inflection 
point; and γ, constant scale that was proportional to the overall growth rate). Genetic parameters 
were estimated based on the linear-mixed model using a restricted maximum likelihood method.
Results: Heritability estimates of body weight gain traits were low to high (0.057 to 0.458). 
Heritability estimates for α, β, and γ were 0.211±0.08, 0.249±0.09, and 0.095±0.06, respectively. 
Both genetic and phenotypic correlations between weight gain traits ranged from –0.527 to 
0.993. Genetic and phenotypic correlation between the growth curve parameters and weight 
gain traits ranged from –0.968 to 0.987.
Conclusion: Based on the results of this study population, we suggest that the KNC could be 
used for selective breeding between 6 and 8 weeks of age to enhance the overall genetic improve
ment of growth traits. After validation of these results in independent studies, these findings 
will be useful for further optimization of breeding programs for KNC.
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INTRODUCTION

Chicken is one of the most popular poultry species and it accounts for 86.4% of the consumption 
of poultry meat worldwide because of rapid development in the broiler industry over the last 50 
years [1]. There are numerous indigenous chicken breeds and their economic traits and genetic 
potential remain largely unknown. Recently, much attention has been focused on indigenous 
chickens as meat or layer strains because of increasing consumer demand and environmentally 
viable characteristics of local ecotypes. 
  Elucidation of changes in chicken growth trajectory over time under a given management 
system is important for the improvement of poultry meat production. In fact, growth curves have 
been widely used to describe poultry growth trajectories and summarize it using a few biologically 
meaningful parameters [2-4]. Knowledge of growth curve parameters is used to determine the 
age at which to select birds and to design management procedures for breeding programs [5]. 
The use of body weight at a given time as selection criteria in breeding program and estimations 
for heritability of growth curve parameters for chicken has been reported previously [6-8]. Thus, 
they can provide a sound biological basis for designing a breeding program which improves pro-
ductivity, efficiency, and capability throughout the entire growth period [9]. 
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  Korean native chicken (KNC) population was established and 
maintained by the National Institute of Animal Science, Republic 
of Korea. As the result of project named “Restoration of Korean 
native chicken” launched in 1994 and the subsequent selective 
breeding program, five distinct chicken lines, based on their 
plumage color, were established: Heuk-saek Jaerae-Jong (black), 
Hoegalsaek Jaerae-jong (gray brown), Jeokgalsaek Jaerae-jong 
(red brown), Baeksaek Jaerae-jong (white), and Hwanggalsaek 
Jaerae-jong (yellow brown) [10]. Although KNCs have a unique 
meat flavor and superior nutrition content compared to com-
mercial broilers [11], retarded growth performance and high 
variation in body weight are obstacles for their commercializa-
tion [12]. However, moderate to high heritabilities of body weight 
traits have been reported for KNC [13]. 
  The objective of present study was to provide estimates of the 
genetic parameters of weight gain, growth curve parameters (i.e., 
α, asymptotic final body weight; β, inflection point at which 50% 
of the asymptotic body weight is realized; γ, constant scale that 
is proportional to the overall growth rate) in KNC. 

MATERIALS AND METHODS

Animal care
All the practices and procedures in this study were strictly fol-
lowed “The Guide for Care and Use of Laboratory Animals” 
published by the Institutional Animal Care and Use Committee 
of NIAS, Korea.

Animals
The experimental animals included the F0 and F1 generations of 
KNC resource pedigree. The KNC nuclear pedigree consisted 
of 83 F0 founders (15 males and 68 females) and 585 F1 progeny 
(282 males, 303 females). Within-line mating was practiced in 
which a total of three cockerels were mated with 4 to 5 hens to 
produce F1 birds. The F1 progeny from two batches were catego-
rized into the five lines: Red brown (R) (n = 135), White (W) (n 
= 122), Yellow brown (Y) (n = 130), Gray brown (G) (n = 110), 
Black (L) (n = 88) based on their plumage color. This resource 
population be made of 68 full-sib families with 3 to 20 birds (aver-
age 10.6). With regard to half-sib families, the population was 
consisted of 15 half-sib families ranging from 28 to 59 birds (aver-
age 44.5). Dams were not used for hatching and brooding. All 
animals were nurtured under standard breeding and management 
procedures implemented by the National Institute of Animal 
Science (NIAS) of Korea. The same environmental and feeding 
regime was provided throughout the experimental period of 20 
weeks.

Growth data collection 
Body weight traits were measured as a part of the breeding and 
maintenance procedures. For each bird, body weight at a specific 
age was recorded from hatching to 20 weeks of age at 2-week 

intervals. Body weight gain during each 2-week period was ob-
tained from hatching to 20 weeks of age. (i.e., weight gain from 
hatch to 2 weeks of age [GR0-2], weight gain from 2 to 4 weeks 
of age [GR2-4], weight gain from 4 to 6 weeks of age [GR4-6], 
weight gain from 6 to 8 weeks of age [GR6-8], weight gain from 
8 to 10 weeks of age [GR8-10] and so forth). The normality of 
body weight data and body weight gain traits were ascertained. 
If putative outliers were identified, they were excluded based on 
the Ryan-Joiner method, which was executed in Minitab software 
[14].

Growth curve data analysis 
For the KNC population, parameters of growth curves were 
estimated using Gompertz, von Bertalanffy, and logistic growth 
curve functions in the SAS NLIN procedure [15]. To determine 
the fit of the growth curves, an R2 value was computed by using 
the SAS NLIN procedure. In addition, convergence properties 
(i.e., number of chickens that the model did not converge) and 
convergence weight (i.e., number of chickens for which the con-
verged weight at 20 weeks of age was 5 times heavier than their 
actual weight) were used as criteria for the fit of growth curves. 
These two criteria were obtained using Minitab’s programming 
language [14]. Equations for the three growth curve models are 
given in Table 1. For each individual KNC, three parameters (i.e. 
α, asymptotic live body weight, β, inflection point at which 50% 
of the asymptotic weight is realized; and γ, a constant scale that 
is proportional to the overall growth rate) from the best-fit equa-
tion were extracted using Minitab’s programming language.

Genetic parameter estimation
Fixed effect of sex, line, and batch were tested for significance 
in each trait in a general linear model using Minitab statistical 
software [14]. The (co)variance components and heritability for 
all traits were estimated with the following univariate linear mixed-
effects model using the ASReml program [16]. 

  Y = Xb+Za+e 

  Where, Y is a vector corresponds to the phenotypic values for 
weight gain traits and growth curve parameter traits; b is the vec-
tor of fixed effects including batch, lines, sex, and; a is a vector of 
random additive genetic effects, assumed to be a~ N (0, A
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for the traits; and I is the identity matrix. a and e were assumed 
to be normally distributed with zero mean and (co)variances, as 
stated above. Phenotypic correlation coefficients were computed 
using the Minitab program [14].

RESULTS

Growth curve determination and descriptive statistics

We evaluated three widely used growth curve models (i.e., Gom-
pertz, von Bertalanffy, and logistic models) to fit the growth curve 
of the KNC population from hatching to 20 weeks of age (Table 
2). In terms of R2 values, the three models performed similarly 
in fitting the growth curve of KNCs. However, the logistic curves 
showed the best performance both in the convergence properties 
and the convergence weight (Table 2). Thus, the logistic model 
chose to conduct the subsequent analyses. The descriptive statis-
tics of the growth curve parameter values (i.e., the asymptotic live 
body weight α [grams], the scaling parameter β [wk], and the 
intrinsic growth rate γ [wk]) estimated from the logistic growth 
curve function are summarized in Table 3. The growth curves 
of KNC individuals were plotted from actual longitudinal body 
weight data from hatching to 20 weeks of age (Supplementary 
Figure S1). 

Heritability estimates of weight gain and growth curve 
parameters
Table 4 shows the heritability estimates of weight gain and growth 
curve parameter traits in KNC. The heritability estimates of GR0-2 
were high with estimates of 0.458, whereas GR2-4 and GR6-8 
were moderate with estimates of 0.266 and 0.233 respectively. 
The heritabilities of GR4-6, GR8-10, and GR10-12 were low with 
heritability estimates of 0.161, 0.088, and 0.058 respectively. Heri-
tability estimates of GR16-18 and GR18-20 were comparable 
with the value for GR10-12. Moderate heritability for growth 
curve parameter traits α and β were observed with estimates of 
0.211 and 0.249, respectively. The heritability estimate for γ was 
low (0.095).

Table 2. Estimated parameters of growth curve using three non-linear models in Korean native chicken

Model
Parameter

R2 Convergence 
property

Convergence  
weightα±SE (g) β±SE (wk) γ±SE (wk)

Gompertz 2,798.9 ± 76.2 3.562 ± 0.04 0.102 ± 0.003 99.55 2 48
von Bertalanffy 3,755.4 ± 168.7 0.750 ± 0.00 0.061 ± 0.003 99.57 30 138
Logistic 2,076.3 ± 27.5 16.09 ± 0.41 0.222 ± 0.004 99.45 1 3

α, asymptotic live body weight (g); β, the log-function for the proportion of the asymptotic mature weight to be gain after birth (wk); γ, constant scale that is proportional to the overall 
growth rate (wk); R2 is the coefficient of determination; Convergence properties can be defined as the number of chickens which the model is not converged; Convergence weight can be 
defined as the number of chickens for which the converged weight at 20 weeks of age is 5 times heavier than actual weight.

Table 3. Descriptive analysis of growth curve parameter related traits (α, β, γ)

Trait N Mean SE Min. Max.

UT
α (g) 557 2,180.20 22.4 1,111.70 4,653.10
β (wk) 560 19.52 0.34 8.79 53.82
γ (wk) 567 0.23 0.01 0.14 0.35

NLT 
α (g) 567 7.66 0.01 7.01 8.44
β (wk) 560 2.90 0.02 2.17 3.99

UT, untransformed data; α, asymptotic live body weight (g); β, inflection point at which 
50% of the asymptotic weight is realized (wk); NLT, natural log transformed values; the 
inflection point age at t i and weight W(ti) are given by loge(β)/α and α/2, respectively.
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Genetic and phenotypic correlations 
Table 5 describe genetic and phenotypic correlation coefficients 
that were estimated from the growth curve parameters and weight 
gain traits. Most of the genetic correlation coefficients among 
the growth curve parameters and weight gain traits were higher 
compared to those for the phenotypic parameter correlation. The 
range of coefficients was between –0.968 and 0.993. The genetic 
correlations between early weight gain traits were high and posi-
tive, whereas it becomes low and negative at later weight gain. 
Genetic correlations between α and weight gain traits from 
GR10-12 to GR 18-20 were strong and positive. Similarly, genetic 
correlations between β and weight gain traits from GR10-12 to 
GR18-20 were positive and ranged between 0.214 to 0.723. Cor-

relation results between growth curve parameters are shown in 
Table 5. Genetic and phenotypic correlations between α and β 
were strong and positive (0.582 and 0.696, respectively). Negative 
phenotypic and genetic correlations were observed between β 
and γ (–0.264 and –0.370, respectively). Negative genetic and 
phenotypic correlations between α and γ were recorded.

DISCUSSION

Growth can be characterized by size increment or gain at a given 
age or from an initial size. Therefore, weight gain can be defined 
as the difference between measurement at the beginning and 
end of the time interval. In our study, we measured body weight 

Table 4. Number of animals, mean and standard deviation, and heritability estimates for weight gain and growth curve parameter traits of Korean native chicken

Trait1)  n Mean±SD Va Ve h²±SE

GR0-2 578 105.36 ± 23.49 102.77 121.68 0.458 ± 0.117
GR2-4 584 122.88 ± 48.84 179.90 497.08 0.266 ± 0.098
GR4-6 584 161.22 ± 66.29 164.87 859.48 0.161 ± 0.078
GR6-8 583 180.44 ± 71.82 406.03 1,334.34 0.233 ± 0.090
GR8-10 581 160.32 ± 69.04 352.10 3,667.61 0.088 ± 0.058
GR10-12 582 223.75 ± 93.35 336.88 5,453.45 0.058 ± 0.056
GR12-14 582 188.05 ± 90.38 246.74 5,626.51 0.042 ± 0.046
GR14-16 576 209.20 ± 77.20 584.16 3,964.95 0.128 ± 0.067
GR16-18 582 206.44 ± 109.64 326.57 4,537.18 0.067 ± 0.050
GR18-20 583 191.15 ± 72.89 258.98 4,314.20 0.057 ± 0.052
α 575 2,178.9 ± 528.1 0.005 0.019 0.211 ± 0.084
β 568 19.49 ± 8.09 0.010 0.029 0.249 ± 0.091
γ 565 0.230 ± 0.032 6.16e-05 5.84e-04 0.095 ± 0.060

n, number of animals analyzed; Mean ± SD, mean with standard deviation; Va, additive genetic component; Ve, residual variance component; h² ± SE, heritability with standard error. 
1) GR0-2, weight gain from hatch to 2 weeks of age; GR2-4, weight gain from 2 to 4 weeks of age; GR4-6, weight gain from 4 to 6 weeks of age; GR6-8, weight gain from 6 to 8 weeks 
of age; GR8-10, weight gain from 8 to 10 weeks of age; GR10-12, weight gain from 10 to 12 weeks of age; GR12-14, weight gain from 12 to 14 weeks of age; GR14-16, weight gain 
from 14 to 16 weeks of age; GR16-18, weight gain from 16 to 18 weeks of age; GR18-20, weight gain from 18 to 20 weeks of age; α, asymptotic live body weight (gram); β, inflection 
point at which 50% of the asymptotic weight is realized (wk), γ, a constant scale that is proportional to the overall growth rate (wk).

Table 5. Genetic (above the diagonal), phenotypic (below the diagonal) correlation between weight gain traits and parameters of the growth curve (GR0-2 to GR18-20, α, β, γ)1)

Trait2) GR0-2 GR2-4 GR4-6 GR6-8 GR8-10 GR10-12 GR12-14 GR14-16 GR16-18 GR18-20 α β γ

GR0-2 - 0.434 0.723 0.545 0.615 0.717 –0.258 –0.140 0.050 0.130 0.063 –0.667 0.198
GR2-4 0.808 - 0.742 0.550 0.502 0.706 0.295 –0.300 –0.527 –0.241 –0.298 –0.657 0.654
GR4-6 0.754 0.812 - 0.920 0.652 0.939 0.993 0.270 0.611 –0.517 0.177 –0.393 0.540
GR6-8 0.743 0.777 0.799 - 0.417 0.971 0.083 0.208 0.198 –0.228 0.288 –0.264 0.987
GR8-10 0.213 0.224 0.216 0.208 - 0.981 0.507 0.143 0.329 –0.235 –0.277 –0.485 0.671
GR10-12 0.401 0.456 0.498 0.504 –0.011 - 0.730 0.605 0.416 –0.385 0.687 0.214 0.542
GR12-14 –0.05 –0.03 –0.024 0.002 0.190 0.079 - 0.780 0.850 –0.277 0.936 - 0.183
GR14-16 0.188 0.192 0.244 0.220 0.280 0.224 0.228 - 0.888 –0.271 0.772 0.369 –0.210
GR16-18 –0.298 –0.314 –0.365 –0.371 0.223 –0.060 0.367 0.194 - 0.021 0.930 0.723 –0.543
GR18-20 0.115 0.021 0.099 0.099 0.091 0.140 0.150 0.193 0.190 - 0.584 0.311 –0.968
α 0.399 0.463 0.576 0.581 0.251 0.483 0.031 0.014 0.550 –0.335 - 0.528 –0.388
β –0.590 –0.665 –0.624 –0.569 0.096 –0.071 0.475 0.231 0.649 0.190 0.696 - –0.370
γ 0.073 0.021 0.006 0.005 0.297 0.219 0.544 0.542 0.711 0.514 –0.560 –0.264 -

1) Genetic correlations are above the diagonal and phenotypic correlations are below the diagonal, Traits: weight gain traits and growth curve parameter traits. 
2) GR0-2, weight gain from hatch to 2 weeks of age; GR2-4, weight gain from 2 to 4 weeks of age; GR4-6, weight gain from 4 to 6 weeks of age; GR6-8, weight gain from 6 to 8 weeks 
of age; GR8-10, weight gain from 8 to 10 weeks of age; GR10-12, weight gain from 10 to 12 weeks of age; GR12-14, weight gain from 12 to 14 weeks of age; GR14-16, weight gain 
from 14 to 16 weeks of age; GR16-18, weight gain from 16 to 18 weeks of age; GR18-20, weight gain from 18 to 20 weeks of age; α, asymptotic live body weight (g); β, inflection 
point at which 50% of the asymptotic weight is realized (wk); γ, constant scale that is proportional to the overall growth rate (wk).
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gain at 2-week intervals until 20 weeks of age. Similar to Aslam 
et al [5] and Ngeno et al [17], we considered three growth curve 
parameters (i.e., α, β, and γ) as a single trait to estimate genetic 
parameters in the moderate sized KNC population. In terms of 
the convergence property and weight, the logistic model described 
the growth pattern of KNC better than did the other two models 
(Table 1). Thus, the logistic growth curve function was selected 
to estimate growth curve parameters for further analyses.
  Heritability estimates for body weight of our study population 
were reported by Cahyadi et al [13] and were in agreement with 
those reported in previous studies [18-21]. Furthermore, the 
estimated heritability values for body weight gain traits were lower 
than those reported for body weight traits. The highest heritability 
estimate for weight gain was exhibited at GR0-2 weeks. The trend 
in heritability observed for weight gain for this KNC population 
was similar to that reported for body weight in previous studies. 
Heritability estimates for body weight related traits exhibited a 
decreasing trend with increasing age in the KNC population. 
Similar results were observed by Adeyinka et al [22] and Saatchi 
et al [23]. The α (asymptotic mature weight) showed a moderate 
heritability that was inconsistent with the results of Mignon-
Grasteau et al [7], Aslam et al [5], and Narinc et al [24]. The 
moderate heritability for α indicated that some genetic gain 
through selection could be achieved. In addition, we found that 
the low heritability estimates for β and γ were consistent with 
the results of Aslam et al [5] and Narinc et al [24] for turkey and 
Japanese quail, respectively.
  Akbas and Yaylak [25] reported that birds with high α values 
had high hatch weights. However, we observed only a moderate 
level of genetic correlation between GR0-2 and α. The genetic 
correlations between body weight gain and β had different signs 
and/or magnitude. Strong negative genetic and phenotypic cor-
relations were observed for GR0-2 to GR8-10, which become 
positive at later stages of growth, similar to that reported by 
Barbato [26] in mice and Mignon-Grasteau et al [7] in chickens. 
  The positive correlation between α and β was in agreement 
with correlation estimates reported for Japanese quail growth 
using the Gompertz model [24]. These results indicate that in-
dividuals with high asymptotic body weight will longer to reach 
β. The parameters β and γ exhibited moderate negative pheno-
typic and genetic correlation in contrast with Aslam et al [5], where 
they obtained a positive correlation (0.64) between these para
meters in turkey. The genetic correlation between α and γ was 
–0.388, whereas the phenotypic correlation was –0.560. The nega-
tive correlation between α and scaled γ indicated that if selection 
was used to increase asymptotic body weight there would be a 
negative effect on the scaling parameter γ. 
  Heritability estimates of weight gain of the KNC population 
were high and moderate during the juvenile stage and decreased 
with age. Previously we reported the genetic parameters using 
cross-sectionally measured body weight data (e.g. body weight 
at 6 weeks of age, body weight at 8 weeks of age) in KNC [13]. 

Compared to the previous study, we analyzed weight gain data 
given two-week of period (e.g., GR6-8) in this study. As a result, 
we could clearly differentiate high or low heritability (Table 4). 
High heritabilities were observed from early stage of growth, 
which are likely to reflect genetic variability. On the contrary, low 
heritabilities were observed from late stage of growth, which are 
likely to reflect genetic invariability. For the genetic phenotypic 
correlation coefficients, analysis of weight gain data allowed us 
to detect both positive and negative signs which could not be seen 
the previous study [13]. The growth curve parameter was heritable 
with a low to moderate estimate, and low genetic and phenotypic 
correlation with weight gain, and consequently the alteration of 
the growth curve of KNC by selection. 
  The results of estimation of heritability suggest that the KNC 
could be used for selective breeding at juvenile stages, between 
6 and 8 weeks of age, to increase the genetic improvement of 
growth performance traits. The heritability for the period be-
tween 6 and 8 weeks of age was not highest (Table 4). In fact, the 
period between 2 and 4 weeks of age showed maximum herita-
bility. However, the standard deviation of the period between 
6 and 8 weeks of age is larger than that of the period between 
2 and 4 weeks of age (Table 4). Thus, given the selection inten-
sity, we can anticipate the maximum expected genetic gain based 
on the individual selection at the period between 6 and 8 weeks 
of age. The findings of this study could provide useful informa-
tion for further optimization of breeding plans for KNC after 
verification of these results in independent studies.
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