Fig. 1. Examples of images classified as incorrect faces inFER 2013 database
Fig. 2. The result of converting cut-out face region imageinto gray image
Fig. 3. The result of applying data augmentation technique
Fig. 4. The proposed CNN architecture
Fig. 5. Computational relationship between consecutiveconvolutional layers
Table 1. Accuracy comparison of data augmentation techniques
Table 2. Average Top 1 Accuracy(%) on cross validation
Table 3. Average confusion matrix on cross validation (%)
Table 4. Average Accuracy(%) on cross database
Table 5. Training and testing time for each model (batch : 128)
Table 6. Accuracy(%) for each model
Table 7. Confusion matrix on ADFES (%)
Table 8. Confusion matrix on CFD (%)
Table 9. Confusion matrix on CK+ (%)
Table 10. Confusion matrix on EU-Emotion Stimulus Set (%)
Table 11. Confusion matrix on ESRC (%)
Table 12. Confusion matrix on FACE DATABASE (%)
Table 13. Confusion matrix on KDEF (%)
Table 14. Confusion matrix on RafD (%)
Table 15. Confusion matrix on Web Search (%)
Table 16. Confusion matrix on WSEFEP (%)
참고문헌
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
- Y. Taigman, M. Yang, M. Ranzato and L. Wolf, "Deepface: Closing the gap to human-level performance in face verification," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014.
- H. Jung, S. Lee, J. Yim, S. Park and J. Kim, "Joint fine-tuning in deep neural networks for facial expression recognition," Proceedings of the IEEE International Conference on Computer Vision, 2015.
- AT Lopes, E de Aguiar and AF De Souza, "Facial expression recognition with Convolutional Neural Networks: Coping with few data and the training sample order," Pattern Recognition, vol. 61, pp.610- 628, 2017. https://doi.org/10.1016/j.patcog.2016.07.026
- P. Burkert, F. Trier, M.Z. Afzal, A. Dengel and M. Liwichki, "Dexpression: Deep convolutional neural network for expression recognition," arXiv preprint arXiv:1509.05371, 2015.
- A. Mollahosseini, D. Chan and M.H. Mahoor, "Going deeper in facial expression recognition using deep neural networks," Applications of Computer Vision (WACV), 2016 IEEE Winter Conference on, IEEE, 2016.
- J. Van der Schalk, S. T. Hawk, A. H. Fischer, and B. J. Doosje, "Moving faces, looking places: validation of the Amsterdam Dynamic Facial Expression Set (ADFES)," Emotion, vol. 11, pp. 907-910, 2011. https://doi.org/10.1037/a0023853
- D.S. Ma, J. Correll and B. Wittenbrink, "The Chicago face database: A free stimulus set of faces and norming data," Behavior research methods, vol. 47, no. 4, pp.1122-1135, 2015. https://doi.org/10.3758/s13428-014-0532-5
- P. Lucey, J. Cohn, T. Kanade, J. Saragih, Z. Ambadar and I. Matthews. "The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression," Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on, IEEE, 2010.
- H. O'Reilly, D. Pigat, S. Fridenson, S. Berggren, S. Tal, O. Golan, S. B"olte, S. Baron-Cohen and D. Lundqvist, "The EU-emotion stimulus set: a validation study," Behavior research methods, vol. 48, no. 2, pp. 567-576, 2016. https://doi.org/10.3758/s13428-015-0601-4
- ESRC 3D Face Database. http://pics.stir.ac.uk/ESRC/
- M. Minear and D.C. Park, "A lifespan database of adult facial stimuli," Behavior Research Methods, Instruments, &Computers, vol. 36, no. 4, pp. 630-633, 2004. https://doi.org/10.3758/BF03206543
- D. Lundqvist, A. Flykt, and A.Ohman, "The Karolinska Directed Emotional Faces(KDEF)," CD ROM from Department of Clinical Neuroscience, Psychology section, Karolinska Institutet, 1998.
- O. Langner, R. Dotsch, G. Bijlstra, D.H. Wigboldus, S.T. Hawk and A. van Knippenberg, "Presentation and validation of the Radboud Faces Database," Cognition and emotion, vol. 24, no. 8, pp.1377-1388, 2010. https://doi.org/10.1080/02699930903485076
- M. Olszanowski, G. Pochwatko, K. Kuklinski, M. Scibor-Rylski, P. Lewinski and RK. Ohme, "Warsaw set of emotional facial expression pictures: a validation study of facial display photographs," Frontiers in psychology, vol. 5, no. 1516, pp.1-8, 2015.
- Learn facial expressions from an image. https://www.kaggle.com/c/challenges-inrepresentation-learning-facial-expressionrecognition-challenge/data
- P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," Computer Vision and Pattern Recognition, 2001, CVPR 2001. Proceedings of the 2001, IEEE Computer Society Conference on, vol. 1, IEEE, 2001.
- N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting," Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.
- A. Krizhevsky, I. Sutskever, and G.E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, 2012.
- R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas and Y. Bengio, "Theano: A Python framework for fast computation of mathematical expressions," arXiv preprint arXiv:1605.02688, 2016.
- K. Sikka, T. Wu, J. Susskind and M. Bartlett, "Exploring Bag of Words Architectures in the Facial Expression Domain," Computer Vision-ECCV 2012, Workshops and Demonstrations, Springer Berlin/Heidelberg, 2012.
- J. Bekios-Calfa, JM. Buenaposada and L. Baumela, "Revisiting linear discriminant techniques in gender recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 4, pp.858-864, 2011. https://doi.org/10.1109/TPAMI.2010.208
- M.J. Den Uyl and H Van Kuilenburg, "The FaceReader: Online facial expression recognition," Proceedings of measuring behavior, vol. 30, 2005.
- M. Ilbeygi and H. Shah-Hosseini, "A novel fuzzy facial expression recognition system based on facial feature extraction from color face images," Engineering Applications of Artificial Intelligence, vol. 25, no. 1, pp. 130-146, 2012. https://doi.org/10.1016/j.engappai.2011.07.004
- K. Simonyan, and A. Zisserman. "Very deep convolutional networks for large-scale image recognition," in Proc. International Conference on Learning Representations, http://arxiv.org/abs/1409.1556, 2014.
- P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus and Y. LeCun, "OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks," In Proc, ICLR, 2014.
- B. Sun, L. Li, G. Zhou and J. He, "Facial expression recognition in the wild based on multimodal texture features," Journal of Electronic Imaging, vol. 25, no. 6, pp,061407-061407, 2016. https://doi.org/10.1117/1.JEI.25.6.061407
- N. Mousavi, H. Siqueira, P. Barros, B. Fernandes and S. Wermter, "Understanding how deep neural networks learn face expressions," Neural Networks (IJCNN), 2016 International Joint Conference on, IEEE, 2016.
- M. Z. Uddin, M. M. Hassan, A. Almogren, M. Zuair, G. Fortino and J. Torresen, "A facial expression recognition system using robust face features from depth videos and deep learning," Computers & Electrical Engineering, 2017.
- V. Mayya, R. M. Pai and M. M. Pai, "Automatic Facial Expression Recognition Using DCNN," Procedia Computer Science,k vol. 93, pp.453-461, 2016. https://doi.org/10.1016/j.procs.2016.07.233
- Z. Meng, P. Liu, J. Cai, S. Han and Y. Tong, "Identity-Aware Convolutional Neural Network for Facial Expression Recognition," Automatic Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on, IEEE, 2017.