Fig. 1. Physical model of electrodynamic suspensionsystem
Fig. 2. Permanent magnetic field and its fundamentalcomponents. (a) Vertical magnetic field (b)Horizontal magnetic field
Fig. 3. PM modeling by single current sheet
Fig. 4. Vertical magnetic field diagram in different PMlengths (a) L=4cm (b) L=40cm (c) L=120cm
Fig. 5. Horizontal magnetic field diagram in different PMlengths (a) L=4cm (b) L=40cm (c) L=120cm
Fig. 6. Lift force per unit length with respect to PMdimensions in 100 m/s velocity
Fig. 7. Variations of lift force to the material cost ratio interms of PM dimensions in 100m/s velocity
Fig. 8. Mesh generation of PM EDS model
Fig. 9. Lift force per unit depth in terms of PM length indifferent thicknesses in 100 m/s velocity
Fig. 10. Drag force per unit depth in terms of PM length indifferent thicknesses
Fig. 11. Experimental PM EDS system
Fig. 12. FEM, analytical and experimental results of liftforce per unit depth in 20m/s velocity
Fig. 13. FEM, analytical and experimental results of dragforce per unit depth in 20m/s velocity
Table 1. Values of fixed variables of suspension system
Table 2. Design parameters bounds
Table 3. Genetic algorithm parameters
Table 4. Parameter of optimized and original EDS system
참고문헌
- R. F. Post, and D. D. Ryutov, "The Inductrack: a simpler approach to magnetic levitation," in Applied Superconductivity, IEEE Transactions on, vol. 10, no. 1, pp. 901-904, 2000. https://doi.org/10.1109/77.828377
- L. Xianxing, D. Jinyue, D. Yi, S. Kai, and M. Lihong, "Design and Static Performance Analysis of a Novel Axial Hybrid Magnetic Bearing," Magnetics, IEEE Transactions on, vol. 50, pp. 1-4, 2014.
- F. Impinna, J. G. Detoni, N. Amati, and A. Tonoli, "Passive Magnetic Levitation of Rotors on Axial Electrodynamic Bearings," Magnetics, IEEE Transactions on, vol. 49, pp. 599-608, 2013. https://doi.org/10.1109/TMAG.2012.2209124
- F. Safaei, A. A. Suratgar, A. Afshar, and M. Mirsalim, "Characteristics Optimization of the Maglev Train Hybrid Suspension System Using Genetic Algorithm," Energy Conversion, IEEE Transactions on, vol. PP, pp. 1-8, 2015.
- W. Kang, W. Dong, L. Heyun, S. Yang, Z. Xianbiao, and Y. Hui, "Analytical Modeling of Permanent Magnet Biased Axial Magnetic Bearing With Multiple Air Gaps," Magnetics, IEEE Transactions on, vol. 50, pp. 1-4, 2014.
- L. Xu and H. Bangcheng, "The Multiobjective Optimal Design of a Two-Degree-of-Freedom Hybrid Magnetic Bearing," Magnetics, IEEE Transactions on, vol. 50, pp. 1-14, 2014.
- B. Duck Kweon, C. Hungje, and L. Jongmin, "Characteristic Analysis of HTS Levitation Force With Various Conditions of Ground Conductors," Applied Superconductivity, IEEE Transactions on, vol. 18, pp. 803-807, 2008. https://doi.org/10.1109/TASC.2008.920684
- L. Jongmin, B. Duck Kweon, K. Hyoungku, A. Min Cheol, L. Young-Shin, and K. Tae-Kuk, "Analysis on Ground Conductor Shape and Size Effect to Levitation Force in Static Type EDS Simulator," Applied Superconductivity, IEEE Transactions on, vol. 20, pp. 896-899, 2010. https://doi.org/10.1109/TASC.2010.2041542
- H. Rezaei and S. Vaez-Zadeh, "Modelling and analysis of permanent magnet electrodynamic suspension systems," Progress In Electromagnetics Research M, Vol. 36, 77-84, 2014. https://doi.org/10.2528/PIERM14032407
- R. J. Hill, "Teaching electrodynamic levitation theory," Education, IEEE Transactions on, vol. 33, pp. 346- 354, 1990. https://doi.org/10.1109/13.61088
- R. F. Post and D. D. Ryutov, "The Inductrack: a simpler approach to magnetic levitation," Applied Superconductivity, IEEE Transactions on, vol. 10, pp. 901-904, 2000. https://doi.org/10.1109/77.828377
- Business Insider. Markets Now. Available Online: http://markets.businessinsider.com/commodities/aluminum-price.
- European Commission. Materials Information System. Available Online: https://setis.ec.europa.eu/mis/material/neodymium.