
J Electr Eng Technol.2018; 13(1): 181-191
http://doi.org/10.5370/JEET.2018.13.1.181

 181
Copyright ⓒ The Korean Institute of Electrical Engineers

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Power Modeling Approach for GPU Source Program

Junke Li*, Bing Guo†, Yan Shen***, Deguang Li** and Yanhui Huang**

Abstract – Rapid development of information technology makes our environment become smarter
and massive high performance computers are providing powerful computing for that. Graphics
Processing Unit (GPU) as a typical high performance component is being widely used for both
graphics and general-purpose applications. Although it can greatly improve computing power, it also
delivers significant power consumption and need sufficient power supplies. To make high performance
computing more sustainable, the important step is to measure it. Current power technologies for GPU
have some drawbacks, such as they are not applicable for power estimation at the early stage. In this
article, we present a novel power technology to correlate power consumption and the characteristics at
the programmer perspective, and then to estimate power consumption of source program without pre-
running. We conduct experiments on Nvidia’s GT740 platform; the results show that our power model
is more accurately than regression model and has an average error of 2.34% and the maximum error of
9.65%.

Keywords: Characteristics of source program, Correlation, Estimation, High performance computing,
Power modelling

1. Introduction

Due to rapid development of information technology,

our life becomes more and smarter. Smart city, smart home,
smart geosciences and smart computing are emerging in
our life, which offer us better living with better resources. To
make our environment smart, collecting and processing
increasing data are the first thing to do. These smart
environments and increasing scale of data largely depend
on the high performance computing and need higher
requirement on computing speed than ever before. Before
2003, performance improvement mainly depends on
increasing the frequency of processor. After the appearance
of power wall, this trend stops. In order to better improve
the performance, a variety of techniques have been proposed
to address this problem, such as vector instructions, multi-
core and hyper-threading. Among them, vectorization and
multi-core are considered as key technologies to lead the
future development of computer. At present, the processor
has shifted from simply increasing processor frequency to
multi-core for gaining continued performance improvement.
Under this trend, the representative of heterogeneous
multi-core architecture, such as graphic processing unit
(GPU), comes into being. Current GPU has the feature of

large number of parallel processing cores, less control
logic and higher peak performance compared with that of
CPU, which makes it be widely used in general purpose
computing. Top 10 in Top500 list of 2015 are using
heterogeneous systems [1]. Although heterogeneous multi-
core GPU has higher performance, its power consumption
is also generally higher. For example, the thermal design
power (TDP) of Nvidia’s Tesla GPUs is about 250Watt,
while the TDP of current high-end quad core CPU is about
130Watt. The power of TianHe2 is up to 17.81 MW and
electricity cost of working one hour is up to more than ten
millions [1]. The problem caused by power consumption,
such as rising cost, increasing the probability of IC’s
(integrated circuit) invalidation under high temperature (if
temperature increase every 10 degrees, the system failure
rate will be doubled typically), decreasing of the system
reliability, has become the important obstacle that blocks
the performance improvement. Therefore, it has important
significance to build an effective mechanism to evaluate
and understand the power consumption.

In researching power-related problems, acquiring power
data of the research object is the basis for subsequent work.
Currently, getting the power data can be divided into two
ways, direct way and indirect way. The former way obtains
the power data through the integrated circuit or multimeter,
which needs additional hardware circuit and susceptible to
environment. The latter way uses the relation between the
power and the hardware performance counters or hardware
events to estimate the power consumption of program, or
uses the simulator to predict the energy. Usually, using
simulator to acquire the energy data of program is used to
evaluate the advantages and disadvantages of the system
structure, to get the detail power consumption of each part

† Corresponding Author: College of Computer Science, Sichuan
University, China. (guobing@scu.edu.cn)

* College of Computer Science, Sichuan University, China/School of
Computer and Information, Qiannan Normal University for
Nationalities, China. (ljk2006ljk@163.com)

** College of Computer Science, Sichuan University, China.
(lideguang.00@163.com, huangyanhui@scu.edu.cn)

*** School of Control Engineering, Chengdu University of Information
Technology, China. (sheny@cuit.edu.cn)

Received: March 5, 2017; Accepted: August 23, 2017

ISSN(Print) 1975-0102
ISSN(Online) 2093-7423

Power Modeling Approach for GPU Source Program

 182 │ J Electr Eng Technol.2018; 13(1): 181-191

or to save costs. The power model based on the hardware
counters or events also show some deficiencies, such as
complex modeling process, poor portability and pre-
running. Currently, the field of GPU power modelling lacks
power estimation model before program runs. Therefore,
this article proposes an application independent and low
cost power model based on the source program and
compiler without pre-running the program. Our approach
consists of the following steps.

Program profiling and feature extraction

We select typical programs from classical GPU
benchmark suites that are written with CUDA and then run
them on typical platform to extract characteristics of
hardware resource used by program.

Power measurement
We got the power consumption from HIOKI 3334 AC/

DC power meter.

Statistical analysis
After getting characteristics and power of each sample,

we first use neural network to model the relation between
power consumption and characteristics; then compare it
with the multiple linear regression (MLR) model.

Verification
Through the two models, we verify their accuracy using

leave-one-out cross validation (LOOCV).
This paper makes the following contributions. First, we

show the method of calculating utilization of hardware
resource. Second, we propose a power estimation model
from perspective view of programmers to analyze and
predict GPU power dissipation. To the best of our
knowledge, our model that uses the feature of source
program and compiler without pre-running is first proposed.

The rest of paper is structured as follows. Section 2
introduces the architecture of GPU; in section 3, related
work is illustrated; section 4 presents our proposed power
model; section 5 details method of calculating utilization of
hardware resource. The proposed model is detailed in
section 6 and then it is compared and verified in section 7.
Finally, we conclude our work in Section 8.

2. GPU Architecture

A large number of papers [2-7] show that GPU power

consumption is closely related with the consumed resource.
So, it is important to clearly detail the processing unit and
memory organization of GPU that impact the power
consumption and execution.

GPU is connected to the CPU as a co-processor through
the PCI-E bus. When the program will be running on GPU,
CPU will prepare and copy processing data to GPU, then
invoke the kernel which is the program running on GPU. In
GPU, multiple streaming processors (short for SPs) will be
grouped into streaming multiprocessors (short for SMs).

The language to parallelize the program on Nvidia’s GPU
is the compute unified device architecture (CUDA) which
uses C-liked fashion. In it, CPU and GPU are respectively
called host and device (co-processor). Programmer can
parallelize the program using above CUDA into three
levels. In the highest level, a kernel can be scheduled by
host to create a single grid that runs on GPU. The multiple
GPUs can execute paralleling kernel simultaneously.
Second, each grid has some thread blocks which can be
specified as three-dimensional array. Third, each thread
block also has some threads of three-dimensional structure.
One or more thread blocks can be scheduled independently
by the SM based on the resource requirement of kernel. In
each thread block, parallel threads will be grouped into 32-
thread which is a warp. In SP, the smallest scheduling
execution unit is warp. Once the warp is executed, a half
warp will be scheduled to all SPs in the SM. In SM,
multiple warps can be simultaneously scheduled whether
they are in the same or different thread blocks. This
scheduling is limited by the available hardware resource in
the SM. When the warp is ready and can meet the hardware
resource, active warp will be assigned to the SPs for
execution. This is the same for the block. There is no
performance penalty in switching warps and blocks; on the
contrary, more active warps and active blocks can effective
hide the compute or memory access latency.

Memory hierarchy also has some levels in GPU. The
global memory which is also called device memory is
located off chip and has high latency. It can be accessed by
all thread blocks in the grid. Shared memory is a high-
speed memory and is located on chip. It can be read or
wrote by all threads in the same block. Each SM has the
fast on chip registers that can be accessed by all thread
blocks. The off chip local memory can also be accessed by
all thread blocks. Due to its high latency, it is used in the
certain function. Constant and the texture memory are
located off chip and are used for read-only data, and it is
used as cache for quick accessing.

For the hardware resource constraint, limited numbers of
thread blocks and threads can be scheduled on each SM.

Table 1. Resource specified by programmer

Resource defined by program Abbreviation
Threads per block Nthreads_block

Registers per thread Nregs_thread
Shared Memory per block Nsmem_block

Table 2. Hardware resource limitation

Hardware Limitation Abbreviation
Max # of blocks per SM Hblocks_SM

Max # of threads per warp Hthreads _warp
Max # of threads per SM Hthreads _SM

Max # of registers Hregs
Max # of registers per block Hregs_block

Max shared mem size per block Hsmem_block
Total global memory size Htotal_gmem

Junke Li, Bing Guo, Yan Shen, Deguang Li and Yanhui Huang

 http://www.jeet.or.kr │ 183

Table 1 shows the resource specified by the programmer.
Threads per block are the number of threads within each
block, and registers per thread are the number of registers
within each thread and shared memory per block is the size
of shared memory assigned to each block. Table 2
represents the hardware constraint. Max # of blocks per
SM are the maximum number of blocks can be assigned
to each SM. This is the same meaning for max # of
warps per SM, max # of threads per warp, max # of
threads per SM, max # of registers per block and max # of
registers per thread. Max # of registers is the maximum
number of registers in GPU. Total shared memory size
and total global memory size are the size of shared
memory and the size of global memory in GPU. For the
granularity constraint in allocating the register and warp
resource, Allocate_G(reg) and Allocate_G(warp) are used
to respectively express them. For the size constraint in
allocating the register and shared memory resource,
Allocate_S(reg) and Allocate_S(smem) are used to
respectively express them.

3. Related works

Currently, more and more programmers and software

developers use the modern GPU to run massively parallel
application extensively. Although there are many researches
[8-12, 31, 32] for analyzing and improving the performance
of GPU, works on energy measuring approaches in energy
problem that hindering the performance improvement
and development are limited. Fig. 1 shows approaches of
measuring the power of GPU. Among these approaches,
build in on-broad power sensor is considered to be
promising, but not all GPUs are integrated with them.
External power instrument [4, 13] can provide accurate
power data, but it needs extra power equipment and
reserving the measuring point on GPU.

The simulation way can provide user with a more in-
depth understanding of GPU hardware on energy
consumption. [14] presents a powered tool and proposes an
architectural power estimation framework primarily for
GPU designers. [15] changes the configuration of CPU
power simulator, McPAT, to make it can get the GPU
power. It use multivariate linear regression method to build
the model and authors use empirical data to achieve the
parameter of model. Like [15], the approach of [16] is also
use the linear regression to get the model. The difference is
that [15] focuses more on the methodology of developing
power models, whereas the [16] focuses on the GPU power
model itself. [17] and [18] use the GPU-PowerSim to
evaluate the power of GPU register files, which also uses
McPAT. Like McPAT, GPUWatch is also used by [28] to
get the power data. Although using the simulation can get
the power, it usually has the problem of depending on
architectural parameter, which is time consuming and
cannot be widely used in the program scheduling.

Fig. 1. Different Approaches of energy measurement[6]

It is feasible to use the performance counter to get the

program or system energy consumption without power
sensor and simulation method. Utilizing the counters to
measure the power is first proposed by [19]. Subsequently,
the method of measuring power using counters is
continuously put forward. The best available GPU power
model using hardware performance counters relies on
statistics to correlate power to performance. [13] estimates
power consumption using the proportion of computational
instruction to total instruction from PTX code. [4] proposes
a statistical power model based on linear regression to
predict the energy consumption of GPU using the
performance counters and its value is got from the
CUDA profiler. Like [4, 7] propose pTop tool, which
construct energy models for the main components (CPU,
network, hard disk) of the computer system using the
linear relationship between the power and the clock
speed and then to acquire real-time power profiles. [29]
uses multivariate linear regression to get the power. [30]
also uses linear regression models to estimate the power
of GPU programs. [6] extracts 10 performance events
and uses back propagation artificial neural network to get
the power consumption of GPU. [2] builts a high level
power consumption model using a tree-based random
forest method based on the performance variables and
demonstrates that it can achieve better accuracy than
regression-based methods. [5] also utilizes random forest
methods with the profiling counters for AMD GPUs and
analyzes the power consumption along with performance.
[20] and [21] predict the GPU power consumption purely
based on the GPU utilization. [20] uses utilization of the
various GPU parts to build the power model. These parts
include floating point unit, register file, ALUs and active
degree of these parts is calculated by [25]. [21]
dynamically predicts the runtime power of Nvidia GeForce
8800 using recorded power data and a trained statistical
model. [22] proposes power model based on support vector
regression using the counters from perfkit tool to estimate
the GPU power. However, the purpose of perfkit tool is
to debug the Opencl and direct3D application, so this
model is more suitable for graphic application. Like [22],
[23] is also used to predict the power of graphic application,

Power Modeling Approach for GPU Source Program

 184 │ J Electr Eng Technol.2018; 13(1): 181-191

which adopts a different approach that builts the energy
and power model from the unit energy consumed by each
instruction and demonstrates that processing of geometry,
fragments, and game logic consumes the most power in the
pipeline.

Although past studies employing the above method have
a very small error because they built the model from
empirical data obtained from existing hardware, these
methods are not applicable for power estimation at the
early stage. Our work also utilizes empirical data, but it can
give programmer an easy way to get the power and can be
used for power-aware scheduling without pre-running.

4. Power model

2

1

() () , 1, 2 ,
t

i
t

E P t dt P t f C T i n= ´ = ´D = ´ =ò L (1)

The energy model can be expressed as Eq. (1). Where,

E is the energy consumption of program; P(t) is the
transient power. P represents the average power of
program. T is the running time of program. Ci is the power
characteristics. P =f(Ci) is called the power-characteristics
correlation model(short for power model). It shows that P
is the function of Ci. How to determine the power function
f and how to get Ci are the main research of source
program power analysis. P is to be considered using
characteristics got from source program and compiler and
we can further get the following model based on Eq.(1).

s() (, , , ,)i reg smem globP f C f O R R R CTMR= = (2)

where, Os is the SM occupancy calculated by the SM
resources used by source program and the total SM
resource in GPU. Rreg is the utilization of register. Rglob is
the utilization of global memory. Rsmem is the utilization of
shared memory. CTMR is the ratio of computation cycles to
memory cycles. From the reason of causing power
consumption [3, 4, 6, 15, 16, 20, 23, 24], a source program
utilizing the hardware resources, such as processing unit
and memory, are the most direct basis for determining the
power consumption. In programming, how to use above
hardware resource by programmer can directly impact the
performance and the power consumption. Therefore, five
characteristics of typical hardware resources are extracted
as the parameters of the power model.

The procedures of establishing function f to get accurate
power model of source program are as follows.

1) Accurately analyze and measure the characteristics of
the source program;

2) Get the E and T though the power meter and time
function. Based on the Eq.(1), the value of P by

 /P E T= (3)

3) This article assumes that five characteristics have the
nonlinear relationship with the power(linear relationship
can be seen as a special nonlinear function). For the back
propagation (BP) artificial neural network can approximate
any nonlinear function with high accuracy and can obtain
the satisfying result, so this paper adopt the BP to
approximate function f after getting the input and output
value. In order to verify the correctness of the assumptions,
we also compare power consumption data got by the MLR
with results obtained by BP.

5. Measurement of Characteristics

Characteristics of the source program can reflect the

utilization of the hardware resources and then show the
power consumption. The research scope of using source
program and compiler to estimate power is to analyze the
resources (processing resources and storage resources)
occupied by the source program, and the influence of
source program characteristics on power consumption.

5.1 Measurement of SM occupancy

SM occupancy is an important characteristic to measure

the hardware resources used by source program. A large
number of articles [2, 6, 15, 17, 20] indicate that it has a
direct impact on the power consumption. Therefore, SM
occupancy is chosen as a characteristic to achieve the
power of source program. At present, the value of SM
occupancy can be calculated by the dimensions defined by
the kernel in the program. It can be got from Eq.(4).

 /s active totalO warp warp= (4)

Where, Warpactive is the number of active warps in SM.

Warptotal is the maximum number of allowed active warp in
SM. We can use nVIDIA's occupancy calculator tool to get
this value.

5.2 Utilization of storage resource

Like SM occupancy, utilization of storage resources is

also an important characteristic to reflect energy
consumption of source program. Currently, measurement
of storage resources utilization includes following aspect.

Utilization of registers

Register is an on-chip cache and it is widely used by
programmers for its low access latency. The utilization of
register resource has an impact on the energy consumption
of GPU, so the utilization of registers can reflect the energy
consumption of program. Utilization of registers can be got
through Eq. (5).

_ _ _(* *)regs thread threads wregs acta ive regs kr Blp ocR HNN warp= (5)

Junke Li, Bing Guo, Yan Shen, Deguang Li and Yanhui Huang

 http://www.jeet.or.kr │ 185

Utilization of shared memory
From researches [2-4, 15, 16, 20, 23], we can know that

the power consumption generated by shared memory also
cannot be ignored. The more shared memory used in the
source program, the higher potential power consumption is.
In this article, we use Eq.(6) to express it.

 _ _(*)Smem smem block active smem blockR N Block H= (6)

Utilization of global memory

When the program is running, the data will be
transferred between the main memory (usually called
memory) and GPU memory. Like the shared memory and
register, the utilization of global memory will also impact
the energy consumption. In order to be able to estimate the
power consumption of the source program, we also use
utilization of global memory to describe the memory used
by source program. Utilization of global memory is
represented by Eq.(7).

 _ _g global memo totalry gmemN HR = (7)

Where, Nglobal_memory is the size of global memory used by

source program. Htotal_gmem represents the total size of
global memory in GPU.

This article emphasizes on measuring the space that
program variables used. For a structural variable, the space
occupied by each of its members can be accumulated and
then we can get the required size of the variable in
memory. Similarly, we can get the space required by an
array of variables using the length of the array to multiply
the space required by a single array element. As an int
array of A[rows] [cols], if using the Visual C++ Microsoft
compiler, the int data type occupied by the number of
bytes is 4 and the array A takes up 4 × rows × cols bytes.
The space of program code is usually determined by the
compiler, and the compiler can provide various optimi-
zation options, such as code optimization, execution time
optimization, so the space of binary code got by the
different compilers or the same compiler on the same piece
of code using different compilation and optimization is
generally not the same size. Meanwhile, program drives
the processor running, so this article uses the characteristic
of CTMR to demonstrate the power consumption produced
by the program code. In this article, utilization of global
memory only contains the size of BBS, data, heap, and
stack.

5.3 Ratio of computation cycles to memory cycles

Except the characteristics of SM resources and storage

resources, the source program emphasize on SM or memory
will also have an impact on the power consumption. For
example, the program of emphasizing on SM and the
program of emphasizing on memory has the different
power behavior [4, 21, 22, 25]. Therefore, it is particularly

essential to measure the degree of the source program
emphasizing on which component and then reflects the
power consumption of source program. [24] uses a rule of
thumb named "ratio of computation cycles to memory
cycles" to measure the density of memory access during
program running. In this article, we take the CTMR
characteristic as the feature of power behavior .CTMR
value can be obtained by Eq. (8).

(_)

(_)
Number Computation Instructions cyclesCTMR

Number Global Memory Transactions cycles
= (8)

Where, Number (Computation Instructions_cycles) and

Number (Global Memory Transactions_cycles) respectively
indicates time spent by executing computations instruction
and the time spent by executing memory access. For
calculating it, we get it through the way of compiler-
assisted and program analysis model proposed in [25].

6. Nonlinear fitting of power consumption

To rational express nonlinear relationship of characteristics

and the power consumption of GPU can estimate the power
consumption of source program, so how to present the
nonlinear relationship is important. The BP neural network
is a kind of numerical approximation method without
establishing mathematical equation; it can approximate any
nonlinear function and has good fitting ability through
learning the input vector and output vector [26]. To make
BP achieve the best fitting effect, the structure of BP
should be firstly determined (number of hidden layer,
number of nodes in hidden layer, transfer function of each
layer) .What’s more, approximation error, convergence
speed and learning rate of neural network are the factors
that also need to be considered.

The number of hidden layer and the number of nodes in
hidden layer will affect the prediction accuracy of network.
Robert Hecht-Nielson in [26] proves that BP network of
single hidden layer can approximate continuous function in

Fig. 2. Structure of BP neural network

Power Modeling Approach for GPU Source Program

 186 │ J Electr Eng Technol.2018; 13(1): 181-191

any closed interval. The number of nodes in hidden layer
should be also considered, but it lacks the guidance of the
scientific method. Usually, the best numbers of nodes l is
got by Eq. (9).

 l n m a£ + + (9)

In Eq. (9), l, n and m are respectively the number of

nodes in hidden layer, the number of nodes in input layer
and the number of nodes in output layer. a is a constant
number between 0 ~ 10. In this paper, BP has five inputs
and one output (power), so the scope of l is: 3 ~ 13.

The structure of the BP is shown in Fig. 2; where, I and
O are respectively the input vector and the output vector;
wij and wjk are respectively the weight between input layer
and hidden layer and the weight between hidden layer and
output layer. The transfer function of hidden layer and
output layer are got from experiment to get the best
performance. From the experiment, the tansig and purelin
in hidden layer and output layer can achieve satisfactory
results in convergence speed and error.

7. Experiment validation and analysis

In this paper, all of experiments are conducted on Intel

i5-3230M quad-core processors (8 cores in total) and
Nvidia’s GT740 platform which is the Kepler architecture
and it consists of two SMs and 2GB DRAM memory.
Each SM contains 192 CUDA cores. The programming
environment of GPU is CUDA6.5. To demonstrate
effectiveness of our algorithm, we select 44 typical
benchmarks from CUDA SDK to conduct typical
experiments, such as BlackScholes, fastWalshTransform,
matrixMul, sortingNetworks，etc, which are widely adopted
by the existing works. For the program from CUDA SDK
cannot reflect the influence of single characteristic
variation on power consumption, we also modify some
program to change the above characteristics to validate our

proposed approach. The Vecadd program and the scalaprod
program are modified to fully reflect the power model
proposed in this paper. To measure the power, we use
HIOKI 3334 AC/DC power meter to get the power of
GT740 when the instances are running. We first measure
the idle power of entire system (Pa). We also get the power
consumption of whole system when a GPU application is
running (Pb). Then, we get the CPU idle power by turning
off the GPU module and rendering the CPU into an idle
state(Pc). With the GPU module still off, we measure the
power dissipation when running the GPU application with
CUDA-related function calls removed (Pd); this value
gives the CPU power. Consequently, Pa-Pc is the GPU idle
power and Pb-Pd-(Pa-Pc) equals the GPU runtime power.
To reduce error, we adopt the way of executing programs
many times to get average power consumption. The
compute capability of experimental platform is 3.5, so
the Allocate_G(reg) is warp, Allocate_G(warp) is 4,
Allocate_S(reg) is 256 and Allocate_S(smem) is 256. After
getting the characteristics of source program and its power
data, we use neural network tool in Matlab R2013a to build
the BP, and adjust the weights and threshold in all layers to
make the mean square error (MSE) meet the desired goal.

Fig. 3 shows the comparison between measured power
and estimated power using our approach. For calculating
error, we use leave-one-out cross-validation (LOOCV)
method. It uses a single program from the 43 program as a
validation data, and the remaining data as the train data.
Program 1-12 is the benchmark form CUDA SDK; 13-22 is
the modified Vecadd program; each different label behind
experimental number indicates different CTMR value;23-
25 is the modified Vecadd program to change utilization of
global memory; each label behind experimental number
indicates how to change utilization of global memory; 26-
30 is the modified Vecadd program to change SM
occupancy; each different label indicates the value of the
SM occupancy;31-37 is the modified Vecadd program to
change utilization of register; each different label behind
experimental number indicates the value of register

1.B
lac

kS
ch

ole
s

2.I
dle

3.F
ast

W
als

hT
ran

sfo
rm

4.S
cal

arp
rod

5.M
atr

ixM
ult

ipl
y

6.r
ed

uc
tio

n
7.s

im
ple

Oc
cu

pa
ncy

8.S
ob

olQ
RN

G
9.s

ort
ing

Ne
tw

ork
s

10
.tra

nsp
ose

Co
ale

sce
d

11
.tra

nsp
ose

Na
ive

12
.V

eca
dd

13
.V

eca
dd

_0
.19

9
14

.V
eca

dd
_0

.29
6

15
.V

eca
dd

_0
.55

5
16

.V
eca

dd
_0

.71
17

.V
eca

dd
_0

.88
3

18
.V

eca
dd

_1
.03

9
19

.V
eca

dd
_1

.43
5

20
.V

eca
dd

_1
.64

7
21

.V
eca

dd
_1

.75
1

22
.V

eca
dd

_1
.99

7
23

.V
eca

dd
_G

EM
E_

Sh
ort

24
.V

eca
dd

_G
EM

E_
Sin

gle
25

.V
eca

dd
_G

EM
E_

Do
ub

le
26

.V
eca

dd
_O

ccu
py

_0
.25

27
.V

eca
dd

_O
ccu

py
_0

.5
28

..V
eca

dd
_O

ccu
py

_0
.75

29
..V

eca
dd

_O
ccu

py
_1

30
.V

eca
dd

_O
ccu

py
_1

31
.V

eca
dd

_R
eg

_0
.43

32
.V

eca
dd

_R
eg

_0
.5

33
.V

eca
dd

_R
eg

_0
.56

34
.V

eca
dd

_R
eg

_0
.68

35
.V

eca
dd

_R
eg

_0
.81

36
.V

eca
dd

_R
eg

_0
.93

37
.V

eca
dd

_R
eg

_1
38

.sc
ala

rpr
od

_S
me

m_
0.0

20
8

39
.sc

ala
rpr

od
_S

me
m_

0.0
41

6
40

.sc
ala

rpr
od

_S
me

m_
0.0

83
3

41
.sc

ala
rpr

od
_S

me
m_

0.1
67

42
.sc

ala
rpr

od
_S

me
m_

0.3
33

43
.sc

ala
rpr

od
_S

me
m_

0.6
66

44
.sc

ala
rpr

od
_S

me
m_

1

0
2
4
6
8

10
12
14
16
18

Po
we

r(W
)

 Measured
 Estimated

Fig. 3. Comparison between estimated and measured power

Junke Li, Bing Guo, Yan Shen, Deguang Li and Yanhui Huang

 http://www.jeet.or.kr │ 187

utilization; 38-44 is the modified scalarprod program to
change utilization of shared memory; each different label
behind experimental number indicates different shared
memory utilization. From fig. 3, we can see that majority
of the programs show high accuracy in their power
prediction. In the experiment, the error is within 10%. The
average error is 2.34% and the maximum error is 9.65%.
Like most study, the accuracy of our proposed approach is
under acceptance.

To validate relationship between the independent
characteristics and dependent power consumption, we also
do the experiments on individual characteristic to analyze
power consumption. Figs. 4-7 and Fig. 8 respectively show
the dependence plots for the utilization of register, SM
occupancy, utilization of shared memory, utilization of
global memory and CMTR. Fig. 8 shows the increase of
power generally goes along with the variable ranking. This
demonstrates that the power consumption has the similar
direct correction with the CTMR. SM occupancy in fig. 5
shows that given higher occupancy, the more power is
consumed. Given the fact that giving more thread blocks to
hide memory or computation latency can generally make
the execution fast, high occupancy consumes more power.

The phenomenon also appears on utilization of shared
memory in fig.6. However, at the highest utilization of
shared memory the power decreases a little. This is because
there are not enough active warps in the pipeline, and this
may result in memory or computation latency and then
slow down the instruction executed. In the experiment, we
find that adjusting the utilization of register and utilization
of global memory will affect the CTMR characteristic.
These facts are shown in fig. 4 and fig. 7. From fig. 4, we
can see the higher the register utilization, the bigger the
value of CTMR. With the utilization of register
enhancement, the power also increases. The experiment
shows adjusting the utilization of register will change the
CTMR and then these two characteristics jointly affect the
power. Fig. 7 illustrates the relationship between utilization
of global memory and the power consumption. To show
how the utilization of global memory affects the power
consumption, the program in each experiment is the same
and we only change the data type. As we can see from the
fig. 7, when the global memory utilization is changed, the
CTMR characteristic is changed too. The two changed
characteristics then make power consumption vary. From
the above analysis, we can know these characteristics have

0.40.50.6
0.7

0.8
0.9

1.0

14.5

15.0

15.5

16.0

0.64
0.65

0.66
0.67

0.68
0.690.70

Po
we

r

CTMRR
register

Fig. 4. Relationship between Rreg and the power

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
13.5

13.8

14.1

14.4

14.7

15.0

Po
w

er

SM Occupancy
Fig. 5. Relationship between Os and the power

0.0 0.2 0.4 0.6 0.8 1.0
14.8

15.0

15.2

15.4

15.6

Po
we

r

Utilization of shared memory

Fig. 6. Relationship between Rsmem and the power

0.0001

0.0002

0.0003

13.2

13.3

13.4

13.5

13.6

13.7

0.20
0.25

0.30 0.35 0.40 0.45

Po
we

r

CTMR

R
gmem

Fig. 7. Relationship between Rgmem and the power

Power Modeling Approach for GPU Source Program

 188 │ J Electr Eng Technol.2018; 13(1): 181-191

correction with the power consumption and they can be
used in the power estimation.

We also conduct several experiments to verify the
divergence impact on the total power consumption with
different input. For reduction benchmark has six
implementations with different control flow conditions and
memory access pattern, so these are selected as the
verification using different input size. Reduction1 version
uses contiguous threads, but its interleaved addressing
results in many shared memory bank conflicts. Reduction2
version uses sequential addressing which are no bank
conflicts. Reduction3 version uses n/2 threads and
performs the first level of reduction when reading from
global memory. Reducion4 version uses the warp shuffle
operation if available to reduce warp synchronization.
Reduction5 version is completely unrolled. Reduction6
version adds multiple elements per thread sequentially.
This reduces the overall cost of the algorithm while
keeping the work complexity O(n) and the step complexity
O(log n). Reduction1 and reduction2 have control flow
conditions for reading data from global memory and
performing reduction operation. Reductions3 performs a
reduction operation when reading the data from global
memory and does the whole reduction operation using
control flow conditions. Reduction4 also performs a
reduction operation when reading the data from global
memory and do the warp shuffle operation using control
flow conditions. Reduction5 performs the unroll operation
using the using control flow conditions. Reduction6 reduces
multiple elements per thread which is determined by the
number of active thread blocks and does warp shuffle
operation using control flow conditions. Three input size of
each experiment are respectively 2M, 32M and 128M. The
compared experiment of three input size and six reduction
versions is illustrated in fig. 9. From it, we can see the
estimated power can reflect the measured power with
maximum error of 9.88% and average error of 2.61%. This
phenomenon demonstrates that our proposed approach can
reflect the power consumption of different control flow
conditions. Except the different input size influences the

Rgmem and Rsmem, it can also affects other characteristic. Fig.
10 shows the different input and divergence affect the
CTMR characteristic. From it, we can see that with the
input size increasing, the CTMR is decreasing. The reason
is that large input size is given, more instructions will be
handled the divergence.

Among the approaches of power estimation, many
articles use the MLR [4, 7, 13, 21] to predict the power
consumption. Therefore, this paper also compares the

0.0 0.4 0.8 1.2 1.6 2.0

14

15

16

17

18

Po
w

er

CTMR
Fig. 8. Relationship between CTMR and the power

Redu
ctio

n1-
1

Redu
ctio

n1-
2

Redu
ctio

n1-
3

Redu
ctio

n2-
1

Redu
ctio

n2-
2

Redu
ctio

n2-
3

Redu
ctio

n3-
1

Redu
ctio

n3-
2

Redu
ctio

n3-
3

Redu
ctio

n4-
1

Redu
ctio

n4-
2

Redu
ctio

n4-
3

Redu
ctio

n5-
1

Redu
ctio

n5-
2

Redu
ctio

n5-
3

Redu
ctio

n6-
1

Redu
ctio

n6-
2

Redu
ctio

n6-
3

0
2
4
6
8

10
12
14
16
18
20 Measured

 Estimated

Po
we

r(W
)

Fig. 9. Power comparisons under different divergence and

input size

2M 32M 128M

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016
0.0018
0.0020
0.0022 Reduce1

 Reduce2
 Reduce3
 Reduce4
 Reduce5
 Reduce6

CT
M

R

Different input size

Fig. 10. Different input affect characteristics

0 4 8 12 16 20 24 28 32 36 40 44 48
-15

-10

-5

0

5

10

15

20

Po
we

r(W
)

Experiment number

 BP_Error
 MLR_Error

Fig. 11. Power error under different approaches

Junke Li, Bing Guo, Yan Shen, Deguang Li and Yanhui Huang

 http://www.jeet.or.kr │ 189

accuracy between the MLR and our proposed power
model. Fig. 11 shows error between the MLR and our
proposed model. From the figure, we can see the maximum
estimated error is 20.231% and average error is 6.56% got
by MLR. Comparison between estimated power got by
MLR and our proposed model, the latter has some
advantages compared with the MLR.

8. Conclusion

Energy consumption in the high-end GPU requires

expensive power supply and cooling system. In this article,
we propose a power estimation model of GPU source
program to predict the energy consumption without pre-
running the program. By extracting the characteristics of
source program, we use BP neural network to present the
model and then get the power data of source program.
Experiments show that our model is effective. Our
proposed novel method can provide basic power data for
further research. For example，we can use this model to
schedule kernel for energy saving. Given the GPU
performance model, we can also do the energy-efficient
scheduling. Furthermore, using this model, we can guide
the programmer to optimize the energy consumption
without pre-running.

Acknowledgements

This work was supported in part by the State Key

Program of National Natural Science Foundation of
China under Grant No.61332001; the National Natural
Science Foundation of China under Grant No. 61272104
and 61472050; the Science and Technology Planning
Project of Sichuan Province under Grant No. 2014
JY0257, 2015GZ0103 and 2014-HM01-00326-SF; the
Science and Technology Foundation of Guizhou Province
under Grant NO.LH20147422. We also acknowledge
group of embedded real-time system for their effective
advice and constructive suggestions, and the reviewers
who provided helpful suggestions which have improved
the manuscript.

References

[1] Top 500 Supercomputer Sites Webpage, November
2015. http://www.top500.org.

[2] Chen, J., Li, B., Zhang, Y., “Tree structured analysis
on GPU power study,” in Proceedings of IEEE
International Conference on Computer Design, pp.
57-64, 2011.

[3] Ma, X., et al, “Statistical power consumption analysis
and modeling for GPU-based computing,” in Pro-
ceedings of ACM SOSP Workshop on Power Aware

Computing and Systems, October 2009.
[4] Nagasaka, H., Maruyama, N., et al, “Statistical power

modeling of GPU kernels using performance
counters,” in Proceedings of IEEE International
Conference on Green Computing, pp. 115-122, 2010.

[5] Zhang, Y., Hu, Y., et al, “Performance and power
analysis of ATI gpu: A statistical approach,” in
Proceedings of IEEE International Conference on
NAS, pp. 115-122, 2011.

[6] Song, S., Su, C., et al, “A simplified and accurate
model of power-performance efficiency on emergent
gpu architectures,” in Proceedings of IEEE Inter-
national Symposium on IPDPS, pp. 676-686, 2013.

[7] Chen, H., Li, Y., & Shi, W., “Fine-grained power
management using process-level profiling,” Sustainable
Computing: Informatics and Systems, vol. 2, no. 1, pp.
33-42, 2012.

[8] Li, K., Yang, W., Li, K, “Performance analysis and
optimization for SpMV on GPU using probabilistic
modeling,” IEEE Trans. on Parallel and Distributed
Systems, vol. 26, no. 1, pp. 196-205, 2015.

[9] Kreutzer, M., Pieper, A., et al, “Performance
Engineering of the Kernel Polynomal Method on
Large-Scale CPU-GPU Systems,” in Proceedings of
IEEE International Conference on IPDPS, pp. 417-
426, 2015.

[10] Chitty, D. M., “Improving the performance of GPU-
based genetic programming through exploitation of
on-chip memory,” Soft Computing, vol. 20, no. 2, pp.
661-680, 2016.

[11] Dastgeer, U., Kessler, C., “Performance-aware com-
position framework for GPU-based systems,” The
Journal of Supercomputing, vol. 71, no. 12, pp. 4646-
4662, 2015.

[12] Angerer, C. M., et al, “A fast, hybrid, power-efficient
high-precision solver for large linear systems based
on low-precision hardware,” Sustainable Computing:
Informatics and Systems, vol. 12, pp. 72-82, 2015.

[13] Luo, C., Suda, R., “A performance and energy
consumption analytical model for GPU,” in Pro-
ceedings of IEEE International Conference on DASC,
pp. 658-665, 2011.

[14] Ramani, K., Ibrahim, A., Shimizu, D., “PowerRed: A
flexible modeling framework for power efficiency
exploration in GPUs,” in Proceedings of the Workshop
on General Purpose Processing on GPUs, October
2007.

[15] Lim, J., et al, “Power modeling for GPU architectures
using McPAT,” ACM Trans. on Design Automation of
Electronic Systems, vol. 19, no. 3, pp. 26, 2014.

[16] Leng, J., Hetherington, T., et al, “GPU Wattch:
enabling energy optimizations in GPGPUs,” ACM
SIGARCH Computer Architecture News, vol. 41, no.
3, ACM, 2013.

[17] N. Goswami, Cao, B., Li, T., “Power-performance
co-optimization of throughput core architecture using

Power Modeling Approach for GPU Source Program

 190 │ J Electr Eng Technol.2018; 13(1): 181-191

resistive memory,” in Proceedings of IEEE Inter-
national Conference on HPCA, pp. 342-353, 2013.

[18] N. Goswami, A. Verma, and T. Li, Gpu-powersim,
2012.http://www.ideal.ece.ufl.edu/main.php?action=g
pupowersim.

[19] Tiwari, V., Malik, S., Wolfe, A., “Power analysis of
embedded software: a first step towards software
power minimization,” IEEE Trans. on Very Large
Scale Integration Systems, vol. 2, no. 4, pp. 437-445,
1994.

[20] Hong, S., Kim, H., “An integrated GPU power and
performance model,” ACM SIGARCH Computer
Architecture News, vol. 38, no. 3, ACM, 2010.

[21] Kim, Y. G., Kim, M., Kim, et al, “A novel GPU
power model for accurate smartphone power break-
down,” ETRI Journal, vol. 37, no. 1, pp. 157-164, 2015.

[22] Ma, X., Dong, M., et al, “Statistical power
consumption analysis and modeling for GPU-based
computing,” in Proceedings of ACM SOSP Workshop
on Power Aware Computing and Systems, 2009.

[23] Pool, J., Lastra, A., & Singh, M., “An energy model
for graphics processing units,” in Proceedings of
IEEE International Conference on ICCD, pp. 409-
416, 2010.

[24] Ryoo, S., Rodrigues, C. I., et al, “Optimization
principles and application performance evaluation of
a multithreaded GPU using CUDA,” in Proceedings
of ACM SIGPLAN Symposium on Principles and
practice of parallel programming, ACM, pp. 73-82,
2008.

[25] Hong, S., Kim, H., “An analytical model for a GPU
architecture with memory-level and thread-level
parallelism awareness,” ACM SIGARCH Computer
Architecture News, vol. 37. no. 3, ACM, 2009.

[26] Sarajedini, Amir, R. Hecht-Nielson, “The best of both
worlds: Casasent networks integrate multilayer per-
ceptrons and radial basis functions,” in Proceedings
of IEEE International Joint Conference on Neural
Networks, vol. 3, pp.905-910, 1992.

[27] Wu, G., Greathouse, J. L., et al, “GPGPU perfor-
mance and power estimate on using machine learning,”
in Proceedings of IEEE International Conference on
HPCA, pp. 564-576, 2015.

[28] Leng, J., Hetherington, T., et al, “GPUWattch:
Enabling Energy Optimizations in GPGPUs,” ACM
SIGARCH Computer Architecture News, vol. 41, no.
3, ACM, 2013.

[29] Bailey, P. E., Lowenthal, D. K., et al, “Adaptive
Configuration Selection for Power-Constrained
Heterogeneous Systems,” in Proceedings of IEEE
International Conference on ICPP, pp. 371-380,
2014.

[30] Ma, K., Li, X., et al, “GreenGPU: A Holistic Approach
to Energy Efficiency in GPU-CPU Heterogeneous
Architectures,” in Proceedings of IEEE International
Conference on ICPP, pp. 48-57, 2012.

[31] Baghsorkhi, S. S., Delahaye, M., et al, “An Adaptive
Performance Modeling Tool for GPU Architectures,”
in Proceedings of IEEE International Conference on
PPoPP, pp. 105-114, 2010.

[32] Madougou S, Varbanescu A L, De Laat C, et al. “The
landscape of GPGPU performance modeling tools,”
Parallel Computing, vol. 56, pp. 18-33, 2016.

Junke Li He received his BS degree in
Computer Science from the Henan
Polytechnic University in 2010, and he
received his MS degree in Computer
Science from Southwest University in
2013, he received his PHD degree in
Computer Science from Sichuan
University. He is currently an associate

professor in the School of Computer and Information at
Qiannan Normal University for Nationalities, China.

Bing Guo He received his BS degree
in Computer Science from the Beijing
Institute of Technology in China, and
MS and PhD degrees in Computer
Science from the University of Elec-
tronic Science and Technology of
China, China, in 1991, 1999, and 2002,
respectively. He is currently a professor

in the School of Computer Science at the Sichuan
University, China. His current research interests include
embedded real-time system and green computing.

Yan Shen She received her MS degree
in Mechatronics Engineering and
PhD degree in Measuring and Testing
Technology and Instruments from
University of Electronic Science and
Technology of China in 2001 and 2004
respectively. Currently she is a
professor in the Control Engineering

College, Chengdu University of Information and Tech-
nology. Her main research interests include distributed
measurement systems, embedded system development,
wireless sensor networks, robotics.

Deguang Li He received his BS
degree in Computer Science from the
PLA Information Engineering Uni-
versity, in 2010, and he received his
MS degree in Computer Science from
Northeastern University, in 2012. He is
currently a PhD candidate in the

Junke Li, Bing Guo, Yan Shen, Deguang Li and Yanhui Huang

 http://www.jeet.or.kr │ 191

School of Computer Science, Sichuan University. His
research interest includes green computing.

Yanhui Huang He received his BS and
the MS degree in Computer Science
from Sichuan University in 1997 and
2002 respectively. Currently he is a
lecture in the school of computer
science at Sichuan University. His
current research interest includes green
computing.

