
J Electr Eng Technol.2018; 13(1): 181-191 
http://doi.org/10.5370/JEET.2018.13.1.181 

 181
Copyright ⓒ The Korean Institute of Electrical Engineers 

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ 
licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Power Modeling Approach for GPU Source Program 
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Abstract – Rapid development of information technology makes our environment become smarter 
and massive high performance computers are providing powerful computing for that. Graphics 
Processing Unit (GPU) as a typical high performance component is being widely used for both 
graphics and general-purpose applications. Although it can greatly improve computing power, it also 
delivers significant power consumption and need sufficient power supplies. To make high performance 
computing more sustainable, the important step is to measure it. Current power technologies for GPU 
have some drawbacks, such as they are not applicable for power estimation at the early stage. In this 
article, we present a novel power technology to correlate power consumption and the characteristics at 
the programmer perspective, and then to estimate power consumption of source program without pre-
running. We conduct experiments on Nvidia’s GT740 platform; the results show that our power model 
is more accurately than regression model and has an average error of 2.34% and the maximum error of 
9.65%. 
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1. Introduction 
 
Due to rapid development of information technology, 

our life becomes more and smarter. Smart city, smart home, 
smart geosciences and smart computing are emerging in 
our life, which offer us better living with better resources. To 
make our environment smart, collecting and processing 
increasing data are the first thing to do. These smart 
environments and increasing scale of data largely depend 
on the high performance computing and need higher 
requirement on computing speed than ever before. Before 
2003, performance improvement mainly depends on 
increasing the frequency of processor. After the appearance 
of power wall, this trend stops. In order to better improve 
the performance, a variety of techniques have been proposed 
to address this problem, such as vector instructions, multi-
core and hyper-threading. Among them, vectorization and 
multi-core are considered as key technologies to lead the 
future development of computer. At present, the processor 
has shifted from simply increasing processor frequency to 
multi-core for gaining continued performance improvement. 
Under this trend, the representative of heterogeneous 
multi-core architecture, such as graphic processing unit 
(GPU), comes into being. Current GPU has the feature of 

large number of parallel processing cores, less control 
logic and higher peak performance compared with that of 
CPU, which makes it be widely used in general purpose 
computing. Top 10 in Top500 list of 2015 are using 
heterogeneous systems [1]. Although heterogeneous multi-
core GPU has higher performance, its power consumption 
is also generally higher. For example, the thermal design 
power (TDP) of Nvidia’s Tesla GPUs is about 250Watt, 
while the TDP of current high-end quad core CPU is about 
130Watt. The power of TianHe2 is up to 17.81 MW and 
electricity cost of working one hour is up to more than ten 
millions [1]. The problem caused by power consumption, 
such as rising cost, increasing the probability of IC’s 
(integrated circuit) invalidation under high temperature (if 
temperature increase every 10 degrees, the system failure 
rate will be doubled typically), decreasing of the system 
reliability, has become the important obstacle that blocks 
the performance improvement. Therefore, it has important 
significance to build an effective mechanism to evaluate 
and understand the power consumption. 

In researching power-related problems, acquiring power 
data of the research object is the basis for subsequent work. 
Currently, getting the power data can be divided into two 
ways, direct way and indirect way. The former way obtains 
the power data through the integrated circuit or multimeter, 
which needs additional hardware circuit and susceptible to 
environment. The latter way uses the relation between the 
power and the hardware performance counters or hardware 
events to estimate the power consumption of program, or 
uses the simulator to predict the energy. Usually, using 
simulator to acquire the energy data of program is used to 
evaluate the advantages and disadvantages of the system 
structure, to get the detail power consumption of each part 
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or to save costs. The power model based on the hardware 
counters or events also show some deficiencies, such as 
complex modeling process, poor portability and pre-
running. Currently, the field of GPU power modelling lacks 
power estimation model before program runs. Therefore, 
this article proposes an application independent and low 
cost power model based on the source program and 
compiler without pre-running the program. Our approach 
consists of the following steps. 

 
Program profiling and feature extraction 

We select typical programs from classical GPU 
benchmark suites that are written with CUDA and then run 
them on typical platform to extract characteristics of 
hardware resource used by program.  

Power measurement 
We got the power consumption from HIOKI 3334 AC/ 

DC power meter. 

Statistical analysis  
After getting characteristics and power of each sample, 

we first use neural network to model the relation between 
power consumption and characteristics; then compare it 
with the multiple linear regression (MLR) model.  

Verification 
Through the two models, we verify their accuracy using 

leave-one-out cross validation (LOOCV). 
This paper makes the following contributions. First, we 

show the method of calculating utilization of hardware 
resource. Second, we propose a power estimation model 
from perspective view of programmers to analyze and 
predict GPU power dissipation. To the best of our 
knowledge, our model that uses the feature of source 
program and compiler without pre-running is first proposed. 

The rest of paper is structured as follows. Section 2 
introduces the architecture of GPU; in section 3, related 
work is illustrated; section 4 presents our proposed power 
model; section 5 details method of calculating utilization of 
hardware resource. The proposed model is detailed in 
section 6 and then it is compared and verified in section 7. 
Finally, we conclude our work in Section 8. 

 
 

2. GPU Architecture 
 
A large number of papers [2-7] show that GPU power 

consumption is closely related with the consumed resource. 
So, it is important to clearly detail the processing unit and 
memory organization of GPU that impact the power 
consumption and execution. 

GPU is connected to the CPU as a co-processor through 
the PCI-E bus. When the program will be running on GPU, 
CPU will prepare and copy processing data to GPU, then 
invoke the kernel which is the program running on GPU. In 
GPU, multiple streaming processors (short for SPs) will be 
grouped into streaming multiprocessors (short for SMs). 

The language to parallelize the program on Nvidia’s GPU 
is the compute unified device architecture (CUDA) which 
uses C-liked fashion. In it, CPU and GPU are respectively 
called host and device (co-processor). Programmer can 
parallelize the program using above CUDA into three 
levels. In the highest level, a kernel can be scheduled by 
host to create a single grid that runs on GPU. The multiple 
GPUs can execute paralleling kernel simultaneously. 
Second, each grid has some thread blocks which can be 
specified as three-dimensional array. Third, each thread 
block also has some threads of three-dimensional structure. 
One or more thread blocks can be scheduled independently 
by the SM based on the resource requirement of kernel. In 
each thread block, parallel threads will be grouped into 32-
thread which is a warp. In SP, the smallest scheduling 
execution unit is warp. Once the warp is executed, a half 
warp will be scheduled to all SPs in the SM. In SM, 
multiple warps can be simultaneously scheduled whether 
they are in the same or different thread blocks. This 
scheduling is limited by the available hardware resource in 
the SM. When the warp is ready and can meet the hardware 
resource, active warp will be assigned to the SPs for 
execution. This is the same for the block. There is no 
performance penalty in switching warps and blocks; on the 
contrary, more active warps and active blocks can effective 
hide the compute or memory access latency. 

Memory hierarchy also has some levels in GPU. The 
global memory which is also called device memory is 
located off chip and has high latency. It can be accessed by 
all thread blocks in the grid. Shared memory is a high-
speed memory and is located on chip. It can be read or 
wrote by all threads in the same block. Each SM has the 
fast on chip registers that can be accessed by all thread 
blocks. The off chip local memory can also be accessed by 
all thread blocks. Due to its high latency, it is used in the 
certain function. Constant and the texture memory are 
located off chip and are used for read-only data, and it is 
used as cache for quick accessing. 

For the hardware resource constraint, limited numbers of 
thread blocks and threads can be scheduled on each SM. 

Table 1. Resource specified by programmer 

Resource defined by program Abbreviation 
Threads per block Nthreads_block 

Registers per thread Nregs_thread 
Shared Memory per block Nsmem_block 

 
Table 2. Hardware resource limitation 

Hardware Limitation Abbreviation 
Max # of blocks per SM Hblocks_SM 

Max # of threads per warp Hthreads _warp 
Max # of threads per SM Hthreads _SM 

Max # of registers Hregs 
Max # of registers per block Hregs_block 

Max shared mem size per block Hsmem_block 
Total global memory size Htotal_gmem 
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Table 1 shows the resource specified by the programmer. 
Threads per block are the number of threads within each 
block, and registers per thread are the number of registers 
within each thread and shared memory per block is the size 
of shared memory assigned to each block. Table 2 
represents the hardware constraint. Max # of blocks per 
SM are the maximum number of blocks can be assigned 
to each SM. This is the same meaning for max # of 
warps per SM, max # of threads per warp, max # of 
threads per SM, max # of registers per block and max # of 
registers per thread. Max # of registers is the maximum 
number of registers in GPU. Total shared memory size 
and total global memory size are the size of shared 
memory and the size of global memory in GPU. For the 
granularity constraint in allocating the register and warp 
resource, Allocate_G(reg) and Allocate_G(warp) are used 
to respectively express them. For the size constraint in 
allocating the register and shared memory resource, 
Allocate_S(reg) and Allocate_S(smem) are used to 
respectively express them. 

 
 

3. Related works 
 
Currently, more and more programmers and software 

developers use the modern GPU to run massively parallel 
application extensively. Although there are many researches 
[8-12, 31, 32] for analyzing and improving the performance 
of GPU, works on energy measuring approaches in energy 
problem that hindering the performance improvement 
and development are limited. Fig. 1 shows approaches of 
measuring the power of GPU. Among these approaches, 
build in on-broad power sensor is considered to be 
promising, but not all GPUs are integrated with them. 
External power instrument [4, 13] can provide accurate 
power data, but it needs extra power equipment and 
reserving the measuring point on GPU. 

The simulation way can provide user with a more in-
depth understanding of GPU hardware on energy 
consumption. [14] presents a powered tool and proposes an 
architectural power estimation framework primarily for 
GPU designers. [15] changes the configuration of CPU 
power simulator, McPAT, to make it can get the GPU 
power. It use multivariate linear regression method to build 
the model and authors use empirical data to achieve the 
parameter of model. Like [15], the approach of [16] is also 
use the linear regression to get the model. The difference is 
that [15] focuses more on the methodology of developing 
power models, whereas the [16] focuses on the GPU power 
model itself. [17] and [18] use the GPU-PowerSim to 
evaluate the power of GPU register files, which also uses 
McPAT. Like McPAT, GPUWatch is also used by [28] to 
get the power data. Although using the simulation can get 
the power, it usually has the problem of depending on 
architectural parameter, which is time consuming and 
cannot be widely used in the program scheduling. 

 
Fig. 1. Different Approaches of energy measurement[6] 
 
It is feasible to use the performance counter to get the 

program or system energy consumption without power 
sensor and simulation method. Utilizing the counters to 
measure the power is first proposed by [19]. Subsequently, 
the method of measuring power using counters is 
continuously put forward. The best available GPU power 
model using hardware performance counters relies on 
statistics to correlate power to performance. [13] estimates 
power consumption using the proportion of computational 
instruction to total instruction from PTX code. [4] proposes 
a statistical power model based on linear regression to 
predict the energy consumption of GPU using the 
performance counters and its value is got from the 
CUDA profiler. Like [4, 7] propose pTop tool, which 
construct energy models for the main components (CPU, 
network, hard disk) of the computer system using the 
linear relationship between the power and the clock 
speed and then to acquire real-time power profiles. [29] 
uses multivariate linear regression to get the power. [30] 
also uses linear regression models to estimate the power 
of GPU programs. [6] extracts 10 performance events 
and uses back propagation artificial neural network to get 
the power consumption of GPU. [2] builts a high level 
power consumption model using a tree-based random 
forest method based on the performance variables and 
demonstrates that it can achieve better accuracy than 
regression-based methods. [5] also utilizes random forest 
methods with the profiling counters for AMD GPUs and 
analyzes the power consumption along with performance. 
[20] and [21] predict the GPU power consumption purely 
based on the GPU utilization. [20] uses utilization of the 
various GPU parts to build the power model. These parts 
include floating point unit, register file, ALUs and active 
degree of these parts is calculated by [25]. [21] 
dynamically predicts the runtime power of Nvidia GeForce 
8800 using recorded power data and a trained statistical 
model. [22] proposes power model based on support vector 
regression using the counters from perfkit tool to estimate 
the GPU power. However, the purpose of perfkit tool is 
to debug the Opencl and direct3D application, so this 
model is more suitable for graphic application. Like [22], 
[23] is also used to predict the power of graphic application, 
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which adopts a different approach that builts the energy 
and power model from the unit energy consumed by each 
instruction and demonstrates that processing of geometry, 
fragments, and game logic consumes the most power in the 
pipeline.  

Although past studies employing the above method have 
a very small error because they built the model from 
empirical data obtained from existing hardware, these 
methods are not applicable for power estimation at the 
early stage. Our work also utilizes empirical data, but it can 
give programmer an easy way to get the power and can be 
used for power-aware scheduling without pre-running. 

 
 

4. Power model 
 

 
2

1

( ) ( ) , 1, 2 ,
t

i
t

E P t dt P t f C T i n= ´ = ´D = ´ =ò L  (1) 

 
The energy model can be expressed as Eq. (1). Where, 

E is the energy consumption of program; P(t) is the 
transient power. P represents the average power of 
program. T is the running time of program. Ci is the power 
characteristics. P =f(Ci) is called the power-characteristics 
correlation model(short for power model). It shows that P  
is the function of Ci. How to determine the power function 
f and how to get Ci are the main research of source 
program power analysis. P is to be considered using 
characteristics got from source program and compiler and 
we can further get the following model based on Eq.(1). 

 
s( ) ( , , , , )i reg smem globP f C f O R R R CTMR= =  (2) 

 
where, Os is the SM occupancy calculated by the SM 
resources used by source program and the total SM 
resource in GPU. Rreg is the utilization of register. Rglob is 
the utilization of global memory. Rsmem is the utilization of 
shared memory. CTMR is the ratio of computation cycles to 
memory cycles. From the reason of causing power 
consumption [3, 4, 6, 15, 16, 20, 23, 24], a source program 
utilizing the hardware resources, such as processing unit 
and memory, are the most direct basis for determining the 
power consumption. In programming, how to use above 
hardware resource by programmer can directly impact the 
performance and the power consumption. Therefore, five 
characteristics of typical hardware resources are extracted 
as the parameters of the power model. 

The procedures of establishing function f to get accurate 
power model of source program are as follows. 

1) Accurately analyze and measure the characteristics of 
the source program; 

2) Get the E and T though the power meter and time 
function. Based on the Eq.(1), the value of P  by 

 
 /P E T=  (3) 

3) This article assumes that five characteristics have the 
nonlinear relationship with the power(linear relationship 
can be seen as a special nonlinear function). For the back 
propagation (BP) artificial neural network can approximate 
any nonlinear function with high accuracy and can obtain 
the satisfying result, so this paper adopt the BP to 
approximate function f after getting the input and output 
value. In order to verify the correctness of the assumptions, 
we also compare power consumption data got by the MLR 
with results obtained by BP. 

 
 

5. Measurement of Characteristics 
 
Characteristics of the source program can reflect the 

utilization of the hardware resources and then show the 
power consumption. The research scope of using source 
program and compiler to estimate power is to analyze the 
resources (processing resources and storage resources) 
occupied by the source program, and the influence of 
source program characteristics on power consumption. 

 
5.1 Measurement of SM occupancy 

 
SM occupancy is an important characteristic to measure 

the hardware resources used by source program. A large 
number of articles [2, 6, 15, 17, 20] indicate that it has a 
direct impact on the power consumption. Therefore, SM 
occupancy is chosen as a characteristic to achieve the 
power of source program. At present, the value of SM 
occupancy can be calculated by the dimensions defined by 
the kernel in the program. It can be got from Eq.(4). 

 
 /s active totalO warp warp=  (4) 

 
Where, Warpactive is the number of active warps in SM. 

Warptotal is the maximum number of allowed active warp in 
SM. We can use nVIDIA's occupancy calculator tool to get 
this value. 

 
5.2 Utilization of storage resource 

 
Like SM occupancy, utilization of storage resources is 

also an important characteristic to reflect energy 
consumption of source program. Currently, measurement 
of storage resources utilization includes following aspect. 

 
Utilization of registers  

Register is an on-chip cache and it is widely used by 
programmers for its low access latency. The utilization of 
register resource has an impact on the energy consumption 
of GPU, so the utilization of registers can reflect the energy 
consumption of program. Utilization of registers can be got 
through Eq. (5). 

 
_ _ _( * * )regs thread threads wregs acta ive regs kr Blp ocR HNN warp=  (5) 
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Utilization of shared memory 
From researches [2-4, 15, 16, 20, 23], we can know that 

the power consumption generated by shared memory also 
cannot be ignored. The more shared memory used in the 
source program, the higher potential power consumption is. 
In this article, we use Eq.(6) to express it. 

 
 _ _( * )Smem smem block active smem blockR N Block H=  (6) 

 
Utilization of global memory 

When the program is running, the data will be 
transferred between the main memory (usually called 
memory) and GPU memory. Like the shared memory and 
register, the utilization of global memory will also impact 
the energy consumption. In order to be able to estimate the 
power consumption of the source program, we also use 
utilization of global memory to describe the memory used 
by source program. Utilization of global memory is 
represented by Eq.(7). 

 
 _ _g global memo totalry gmemN HR =  (7) 

 
Where, Nglobal_memory is the size of global memory used by 

source program. Htotal_gmem represents the total size of 
global memory in GPU. 

This article emphasizes on measuring the space that 
program variables used. For a structural variable, the space 
occupied by each of its members can be accumulated and 
then we can get the required size of the variable in 
memory. Similarly, we can get the space required by an 
array of variables using the length of the array to multiply 
the space required by a single array element. As an int 
array of A[rows] [cols], if using the Visual C++ Microsoft 
compiler, the int data type occupied by the number of 
bytes is 4 and the array A takes up 4 × rows × cols bytes. 
The space of program code is usually determined by the 
compiler, and the compiler can provide various optimi-
zation options, such as code optimization, execution time 
optimization, so the space of binary code got by the 
different compilers or the same compiler on the same piece 
of code using different compilation and optimization is 
generally not the same size. Meanwhile, program drives 
the processor running, so this article uses the characteristic 
of CTMR to demonstrate the power consumption produced 
by the program code. In this article, utilization of global 
memory only contains the size of BBS, data, heap, and 
stack. 

 
5.3 Ratio of computation cycles to memory cycles 

 
Except the characteristics of SM resources and storage 

resources, the source program emphasize on SM or memory 
will also have an impact on the power consumption. For 
example, the program of emphasizing on SM and the 
program of emphasizing on memory has the different 
power behavior [4, 21, 22, 25]. Therefore, it is particularly 

essential to measure the degree of the source program 
emphasizing on which component and then reflects the 
power consumption of source program. [24] uses a rule of 
thumb named "ratio of computation cycles to memory 
cycles" to measure the density of memory access during 
program running. In this article, we take the CTMR 
characteristic as the feature of power behavior .CTMR 
value can be obtained by Eq. (8). 

 

 
(  _ )

(   _ )
Number Computation Instructions cyclesCTMR

Number Global Memory Transactions cycles
=  (8) 

 
Where, Number (Computation Instructions_cycles) and 

Number (Global Memory Transactions_cycles) respectively 
indicates time spent by executing computations instruction 
and the time spent by executing memory access. For 
calculating it, we get it through the way of compiler-
assisted and program analysis model proposed in [25]. 

 
 

6. Nonlinear fitting of power consumption 
 
To rational express nonlinear relationship of characteristics 

and the power consumption of GPU can estimate the power 
consumption of source program, so how to present the 
nonlinear relationship is important. The BP neural network 
is a kind of numerical approximation method without 
establishing mathematical equation; it can approximate any 
nonlinear function and has good fitting ability through 
learning the input vector and output vector [26]. To make 
BP achieve the best fitting effect, the structure of BP 
should be firstly determined (number of hidden layer, 
number of nodes in hidden layer, transfer function of each 
layer) .What’s more, approximation error, convergence 
speed and learning rate of neural network are the factors 
that also need to be considered. 

The number of hidden layer and the number of nodes in 
hidden layer will affect the prediction accuracy of network. 
Robert Hecht-Nielson in [26] proves that BP network of 
single hidden layer can approximate continuous function in 

 

Fig. 2. Structure of BP neural network 



Power Modeling Approach for GPU Source Program 

 186 │ J Electr Eng Technol.2018; 13(1): 181-191 

any closed interval. The number of nodes in hidden layer 
should be also considered, but it lacks the guidance of the 
scientific method. Usually, the best numbers of nodes l is 
got by Eq. (9). 

 
 l n m a£ + +   (9) 

 
In Eq. (9), l, n and m are respectively the number of 

nodes in hidden layer, the number of nodes in input layer 
and the number of nodes in output layer. a is a constant 
number between 0 ~ 10. In this paper, BP has five inputs 
and one output (power), so the scope of l is: 3 ~ 13. 

The structure of the BP is shown in Fig. 2; where, I and 
O are respectively the input vector and the output vector; 
wij and wjk are respectively the weight between input layer 
and hidden layer and the weight between hidden layer and 
output layer. The transfer function of hidden layer and 
output layer are got from experiment to get the best 
performance. From the experiment, the tansig and purelin 
in hidden layer and output layer can achieve satisfactory 
results in convergence speed and error.  

 
 

7. Experiment validation and analysis 
 
In this paper, all of experiments are conducted on Intel 

i5-3230M quad-core processors (8 cores in total) and 
Nvidia’s GT740 platform which is the Kepler architecture 
and it consists of two SMs and 2GB DRAM memory. 
Each SM contains 192 CUDA cores. The programming 
environment of GPU is CUDA6.5. To demonstrate 
effectiveness of our algorithm, we select 44 typical 
benchmarks from CUDA SDK to conduct typical 
experiments, such as BlackScholes, fastWalshTransform, 
matrixMul, sortingNetworks，etc, which are widely adopted 
by the existing works. For the program from CUDA SDK 
cannot reflect the influence of single characteristic 
variation on power consumption, we also modify some 
program to change the above characteristics to validate our 

proposed approach. The Vecadd program and the scalaprod 
program are modified to fully reflect the power model 
proposed in this paper. To measure the power, we use 
HIOKI 3334 AC/DC power meter to get the power of 
GT740 when the instances are running. We first measure 
the idle power of entire system (Pa). We also get the power 
consumption of whole system when a GPU application is 
running (Pb). Then, we get the CPU idle power by turning 
off the GPU module and rendering the CPU into an idle 
state(Pc). With the GPU module still off, we measure the 
power dissipation when running the GPU application with 
CUDA-related function calls removed (Pd); this value 
gives the CPU power. Consequently, Pa-Pc is the GPU idle 
power and Pb-Pd-(Pa-Pc) equals the GPU runtime power. 
To reduce error, we adopt the way of executing programs 
many times to get average power consumption. The 
compute capability of experimental platform is 3.5, so 
the Allocate_G(reg) is warp, Allocate_G(warp) is 4, 
Allocate_S(reg) is 256 and Allocate_S(smem) is 256. After 
getting the characteristics of source program and its power 
data, we use neural network tool in Matlab R2013a to build 
the BP, and adjust the weights and threshold in all layers to 
make the mean square error (MSE) meet the desired goal.  

Fig. 3 shows the comparison between measured power 
and estimated power using our approach. For calculating 
error, we use leave-one-out cross-validation (LOOCV) 
method. It uses a single program from the 43 program as a 
validation data, and the remaining data as the train data. 
Program 1-12 is the benchmark form CUDA SDK; 13-22 is 
the modified Vecadd program; each different label behind 
experimental number indicates different CTMR value;23-
25 is the modified Vecadd program to change utilization of 
global memory; each label behind experimental number 
indicates how to change utilization of global memory; 26-
30 is the modified Vecadd program to change SM 
occupancy; each different label indicates the value of the 
SM occupancy;31-37 is the modified Vecadd program to 
change utilization of register; each different label behind 
experimental number indicates the value of register 
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Fig. 3. Comparison between estimated and measured power 
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utilization; 38-44 is the modified scalarprod program to 
change utilization of shared memory; each different label 
behind experimental number indicates different shared 
memory utilization. From fig. 3, we can see that majority 
of the programs show high accuracy in their power 
prediction. In the experiment, the error is within 10%. The 
average error is 2.34% and the maximum error is 9.65%. 
Like most study, the accuracy of our proposed approach is 
under acceptance. 

To validate relationship between the independent 
characteristics and dependent power consumption, we also 
do the experiments on individual characteristic to analyze 
power consumption. Figs. 4-7 and Fig. 8 respectively show 
the dependence plots for the utilization of register, SM 
occupancy, utilization of shared memory, utilization of 
global memory and CMTR. Fig. 8 shows the increase of 
power generally goes along with the variable ranking. This 
demonstrates that the power consumption has the similar 
direct correction with the CTMR. SM occupancy in fig. 5 
shows that given higher occupancy, the more power is 
consumed. Given the fact that giving more thread blocks to 
hide memory or computation latency can generally make 
the execution fast, high occupancy consumes more power. 

The phenomenon also appears on utilization of shared 
memory in fig.6. However, at the highest utilization of 
shared memory the power decreases a little. This is because 
there are not enough active warps in the pipeline, and this 
may result in memory or computation latency and then 
slow down the instruction executed. In the experiment, we 
find that adjusting the utilization of register and utilization 
of global memory will affect the CTMR characteristic. 
These facts are shown in fig. 4 and fig. 7. From fig. 4, we 
can see the higher the register utilization, the bigger the 
value of CTMR. With the utilization of register 
enhancement, the power also increases. The experiment 
shows adjusting the utilization of register will change the 
CTMR and then these two characteristics jointly affect the 
power. Fig. 7 illustrates the relationship between utilization 
of global memory and the power consumption. To show 
how the utilization of global memory affects the power 
consumption, the program in each experiment is the same 
and we only change the data type. As we can see from the 
fig. 7, when the global memory utilization is changed, the 
CTMR characteristic is changed too. The two changed 
characteristics then make power consumption vary. From 
the above analysis, we can know these characteristics have 
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correction with the power consumption and they can be 
used in the power estimation. 

We also conduct several experiments to verify the 
divergence impact on the total power consumption with 
different input. For reduction benchmark has six 
implementations with different control flow conditions and 
memory access pattern, so these are selected as the 
verification using different input size. Reduction1 version 
uses contiguous threads, but its interleaved addressing 
results in many shared memory bank conflicts. Reduction2 
version uses sequential addressing which are no bank 
conflicts. Reduction3 version uses n/2 threads and 
performs the first level of reduction when reading from 
global memory. Reducion4 version uses the warp shuffle 
operation if available to reduce warp synchronization. 
Reduction5 version is completely unrolled. Reduction6 
version adds multiple elements per thread sequentially. 
This reduces the overall cost of the algorithm while 
keeping the work complexity O(n) and the step complexity 
O(log n). Reduction1 and reduction2 have control flow 
conditions for reading data from global memory and 
performing reduction operation. Reductions3 performs a 
reduction operation when reading the data from global 
memory and does the whole reduction operation using 
control flow conditions. Reduction4 also performs a 
reduction operation when reading the data from global 
memory and do the warp shuffle operation using control 
flow conditions. Reduction5 performs the unroll operation 
using the using control flow conditions. Reduction6 reduces 
multiple elements per thread which is determined by the 
number of active thread blocks and does warp shuffle 
operation using control flow conditions. Three input size of 
each experiment are respectively 2M, 32M and 128M. The 
compared experiment of three input size and six reduction 
versions is illustrated in fig. 9. From it, we can see the 
estimated power can reflect the measured power with 
maximum error of 9.88% and average error of 2.61%. This 
phenomenon demonstrates that our proposed approach can 
reflect the power consumption of different control flow 
conditions. Except the different input size influences the 

Rgmem and Rsmem, it can also affects other characteristic. Fig. 
10 shows the different input and divergence affect the 
CTMR characteristic. From it, we can see that with the 
input size increasing, the CTMR is decreasing. The reason 
is that large input size is given, more instructions will be 
handled the divergence. 

Among the approaches of power estimation, many 
articles use the MLR [4, 7, 13, 21] to predict the power 
consumption. Therefore, this paper also compares the 
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accuracy between the MLR and our proposed power 
model. Fig. 11 shows error between the MLR and our 
proposed model. From the figure, we can see the maximum 
estimated error is 20.231% and average error is 6.56% got 
by MLR. Comparison between estimated power got by 
MLR and our proposed model, the latter has some 
advantages compared with the MLR. 

 
 

8. Conclusion 
 
Energy consumption in the high-end GPU requires 

expensive power supply and cooling system. In this article, 
we propose a power estimation model of GPU source 
program to predict the energy consumption without pre-
running the program. By extracting the characteristics of 
source program, we use BP neural network to present the 
model and then get the power data of source program. 
Experiments show that our model is effective. Our 
proposed novel method can provide basic power data for 
further research. For example，we can use this model to 
schedule kernel for energy saving. Given the GPU 
performance model, we can also do the energy-efficient 
scheduling. Furthermore, using this model, we can guide 
the programmer to optimize the energy consumption 
without pre-running. 
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