Fig. 1. Power outages causes in the United States [4]
Fig. 2. Current RMS of a THIF
Fig. 3. Study area
Fig. 4. Obtained white points representing trees’ crown inFig. 3
Fig. 5. Location of sampling points
Fig. 6. Electrical conductivity measurement of samples
Fig. 7. EC values of 25 live poplar trees
Fig. 8. Linear relationship between electrical conductivityand salt content of an electrolyte
Fig. 9. False color composite (432) of study area
Fig. 10. The reflectance data corresponding to each spectralband
Fig. 11. The model fitted for electrical conductivity withthe R2 = 0.4409
Fig. 12. Fundamental component and high frequencycomponents of tested trees
Fig. 13. Distribution of intrinsic mode functions
Fig. 14. Algorithm of Quantiles calculation
Fig. 15. The quantile-quantile plots and estimated lines
Fig. 16. HIF experiment under 20 kV power lines
Fig. 17. Downloaded stored THIF current (mA)
Table. 1. Coefficients of regression equation
Table 2. Max amplitude of THIF current (A)
Table 3. Max amplitude of THIF current
Table 4. The estimated maximum amplitude for high frequency components
참고문헌
- M. Adamiak, C. Wester, M. Thakur, C. Jensen, "High impedance fault detectionon distribution feeders," GE Industrial Solution, pp. 25-31, 2006.
- A. Milioudis, G. Andreou, and D. Labridis, "Enhanced protection scheme for smart grids using power line communications techniques -Part I: Detection of high impedance fault occurrence," IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1621-1630, 2012. https://doi.org/10.1109/TSG.2012.2208987
- Apostolos N. Milioudis, Georgios T. Andreou, Dimitris P. Labridis, "Detection and Location of High Impedance Faults in Multiconductor Overhead Distribution Lines Using Power Line Communication Devices," IEEE Trans. Smart Grid, vol. 6, pp. 894- 902, 2015. https://doi.org/10.1109/TSG.2014.2365855
- T. Marxsen. "Power line bushfire safety program," Department of Economic Development, Jobs, Transport and Resources, Jul, 2015.
- J. R. Macedo, J. W. Resende, C. A. Bissochi, D. Carvalho, F.C. Castro, "Proposition of an inter harmonic-based methodology for high-impedance fault detection in distribution systems," IET Gener. Transm. Distrib. vol. 9, no. 16, pp. 2593-2601, 2015. https://doi.org/10.1049/iet-gtd.2015.0407
- L.U. Iurinic, A.R. Herrera-orozco, R.G. Ferraz, A.S. Bretas, "Distribution Systems High-Impedance Fault Location: A Parameter Estimation Approach," IEEE Trans. Power Deliv., vol. 31, pp. 1806-1814, 2016. https://doi.org/10.1109/TPWRD.2015.2507541
- N. Elkalashy, M. Lehtonen, H. Darwish, M. Izzularab, A.-M. Taalab, "Modeling and experimental verifycation of high impedance arcing fault in medium voltage networks," IEEE Trans. Dielectr. Electr. Insul. vol. 14, no. 2, pp. 375-383, 2007. https://doi.org/10.1109/TDEI.2007.344617
- C. H. Kim, H. Kim, Y. Ko, S. H. Byun, R. K. Aggarwal and A. T. Johns, "A Novel Fault-Detection Technique of High-Impedance Arcing Faults in Transmission Lines Using the Wavelet Transform," IEEE Trans. Power Deliv., vol. 17, no. 4, pp. 921-929, 2002. https://doi.org/10.1109/TPWRD.2002.803780
- R. Paththamperuma, I. Perera, K. Perera, C. Perera, N. De Silva, U. Javatunga, "High Impedance Arcing Fault Detection in Low Voltage Distribution Network," Digital Library of University of Moratuwa, pp. 1-6, 2013.
- V.T.H.F.R.S. Maximov, J.L. Guardado, "High impedance fault locationformulation: a least square estimator based approach," Math. Problems Eng., p. 1-10, 2014.
- M. G. Ahsaee, "Accurate NHIF locator utilizing twoend unsynchronized measurements," IEEE Trans. Power Del., vol. 28, no. 1, pp. 419-426, 2013. https://doi.org/10.1109/TPWRD.2012.2215889
- W. Costa dos Santos, B. Alencar de Souza, N. Silva Dantas Brito, F. Bezerra Costa, M. Renato Cerqueira PaesJr "High Impedance Faults: From Field Tests to Modeling", in Journal of. Control, Automation and Electrical Systems, vol. 24, no. 6, pp. 885-896, 2013. https://doi.org/10.1007/s40313-013-0072-8
- A. Mahari, H. Seyedi, "High impedance fault protection in transmission lines using a WPT-based algorithm," Int. J. Electr. Power Energy Syst. vol. 67, pp. 537-545, 2015. https://doi.org/10.1016/j.ijepes.2014.12.022
- P. Biradar, V.R. Sheelvant, "High-impedance fault detection using wavelet transform," Int. J. Eng. Res. Gen. Sci., pp. 166-173, 2015.
- N.R. Varma, D.B.V.S. Ram, D.K.S.R. Anjaneyulu, "Development of fault detection algorithm for high impedance faults in distribution network using multiresolution analysis," Int. J. Eng. Res. Technol. vol. 3, no. 9, pp. 573-576, 2014.
- I. Baqui, I. Zamora, J. Mazon, G. Buigues, "High impedance fault detection methodology using wavelet transform and artificial neural networks," Electr. Power Syst. Res. vol. 81, no. 7, pp. 1325-1333, 2011. https://doi.org/10.1016/j.epsr.2011.01.022
- M. A. Azpurua, M. Pous, F. Silva, "Decomposition of Electromagnetic Interferences in the Time-Domain," IEEE Trans. Electromagn. Compat., vol. 58, no. 2, pp. 385-392, 2016. https://doi.org/10.1109/TEMC.2016.2518302
- J. C. Chan, H. Ma, T. K. Saha, "Self-adaptive partial discharge signal de-noising based on ensemble empirical mode decomposition and automatic morphological thresholding", IEEE Trans. Dielectr. Electr. Insul, vol. 21, pp. 294-303, 2014. https://doi.org/10.1109/TDEI.2013.003839
- A. Ghaderi, H.A. Mohammadpour, H. Ginn, High impedance fault detectionmethod efficiency: simulation vs. real-world data acquisition, in: Power and Energy Conference at Illinois (PECI), 2015 IEEE, pp. 1-5, 2015.
- F. Namdari, N. Bahador, "Modeling trees internal tissue for estimating electrical leakage current," IEEE Trans. Dielectr. Electr. Insul., vol. 23, pp. 1663-1674, 2016. https://doi.org/10.1109/TDEI.2016.005492
- F. Namdari, N. Bahador, "Modeling trees internal tissue for estimating electrical leakage current," In Progress: IET Gener. Transm. Distrib., Aug. 2017.
- R.K. Sairam, K.R. Veerabhadra, G.C. Srivastava. "Differential response of wheat genotypes to longterm salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration," Plant Sci., vol. 163, pp. 1037-1046, 2002. https://doi.org/10.1016/S0168-9452(02)00278-9
- G.G. Aseyev. "Supramolecular Interactions and Non- Equilibrium Phenomena in concentrated solutions Georgii Georgievich Aseyev," CRC Press, 2014.
- N. R. Bahador, F. Namdari. And H. R. Matinfar, "Feature extraction of tree-related high impedance faults as a source of electromagnetic interference around medium voltage power lines' corridors," Progress In Electromagnetics Research B, vol. 75, pp. 13-26, 2017. https://doi.org/10.2528/PIERB17022802