DOI QR코드

DOI QR Code

A method for measuring tonal noise of underwater vehicle using virtual synthetic array in near-field

근접장에서 가상 합성 배열을 이용한 수중 이동체의 토널 소음 측정 방법

  • Received : 2018.07.27
  • Accepted : 2018.11.21
  • Published : 2018.11.30

Abstract

A receiving array system can be applied for tonal noise analysis of underwater vehicles, but it is difficult to install and operate, and a lot of cost is required. In order to overcome this problem, this paper proposes a method to measure the tonal noise of underwater vehicle after synthesizing a virtual array using single receiver. The proposed method compensates the Doppler frequency and time delay caused by the movement of the underwater sound source and applies the focused beamforming technique. The performance of the proposed method was analyzed via simulation.

수중 이동체의 토널 소음 분석을 위하여 수신 배열 시스템이 적용되고 있지만 설치와 운용에 어려움이 있으며, 많은 비용이 필요하다. 이러한 문제점을 극복하기 위해 본 논문에서는 하나의 수신기를 이용하여 가상 배열을 합성한 후 수중 이동체의 토널 소음을 측정하는 방법을 제안한다. 제안한 방법은 수중 음원의 이동으로 인하여 발생하는 도플러 주파수와 시간 지연을 보정하고, 초점 빔 형성 기법을 적용하였다. 모의실험을 통해 제안한 방법의 성능을 분석하였다.

Keywords

GOHHBH_2018_v37n6_443_f0001.png 이미지

Fig. 1. Geometry between underwater vehicle and single receiver.

GOHHBH_2018_v37n6_443_f0002.png 이미지

Fig. 2. Variation of doppler frequency at 100 Hz.

GOHHBH_2018_v37n6_443_f0003.png 이미지

Fig. 3. Flow of the proposed method.

GOHHBH_2018_v37n6_443_f0004.png 이미지

Fig. 4. Comparison of waveforms at receiver arrays and virtual synthetic receiver arrays, (a) before compensation, (b) after compensation.

GOHHBH_2018_v37n6_443_f0005.png 이미지

Fig. 5. Beamformer output power, (a) 100 Hz, (b) 200 Hz, (c) 300 Hz.

GOHHBH_2018_v37n6_443_f0006.png 이미지

Fig. 6. Comparison of beamforming output power at the highest power point.

GOHHBH_2018_v37n6_443_f0007.png 이미지

Fig. 7. Spectrum according to the source position error, (a) no error, (b) source (5,5) m/receiver (-5,-5) m, (c) source (5,-5) m/receiver (-5,5) m, (d) source (-5,5) m/receiver (5,-5) m.

References

  1. J. Ranicar, "Shallow acoustic underway range," Technical report, Nautronix Ltd., 1991.
  2. S. Stergiopoulos and E. J. Sullivan, "Extended towed array processing by an overlap correlator," J. Acoust. Soc. Am. 86, 158-171 (1989). https://doi.org/10.1121/1.398335
  3. S. Stergiopoulos and H. Urban, "An experimental study in forming a long synthetic aperture at sea," IEEE J. Oceanic Engineering, 17, 62-72 (1992). https://doi.org/10.1109/48.126955
  4. S. Stergiopoulos and H. Urban, "An new passive synthetic aperture technique for towed arrays," IEEE J. Oceanic Engineering, 17, 16-25 (1992). https://doi.org/10.1109/48.126950
  5. T. C. Yang, "Source depth estimation based on synthetic aperture beamforming for a moving source," J. Acoust. Soc. Am. 138, 1678-1686 (2015). https://doi.org/10.1121/1.4929748
  6. W. J. Park and K. M. Kim, "Range estimation of underwater acoustic moving source using doppler frequency map" (in Korean), J. Acoust. Soc. Kr, 36, 413-418 (2017).
  7. R. J. Urick, Principles of Underwater Sound (McGraw- Hill Co., New York, 1983), pp. 328-376.
  8. Y. D. Huang and M. Barkat, "Near-field multiple source localization by passive sensor array," IEEE Trans. Antennas and Propagation, 39, 968-975 (1991). https://doi.org/10.1109/8.86917
  9. S.D. Somasundaram, "Wideband robust Capon beamforming for passive sonar," IEEE J. Oceanic Engineering, 38, 308-322 (2013). https://doi.org/10.1109/JOE.2012.2223560