DOI QR코드

DOI QR Code

Sensitivity Analysis of Near Surface Air Temperature to Land Cover Change and Urban Parameterization Scheme Using Unified Model

통합모델을 이용한 토지피복변화와 도시 모수화 방안에 따른 지상 기온 모의성능 민감도 분석

  • Hong, Seon-Ok (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Byon, Jae-Young (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Park, HyangSuk (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Young-Gon (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Baek-Jo (Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Ha, Jong-Chul (Applied Meteorology Research Division, National Institute of Meteorological Sciences)
  • 홍선옥 (국립기상과학원 응용기상연구과) ;
  • 변재영 (국립기상과학원 응용기상연구과) ;
  • 박향숙 (국립기상과학원 응용기상연구과) ;
  • 이영곤 (국립기상과학원 응용기상연구과) ;
  • 김백조 (국립기상과학원 관측예보연구과) ;
  • 하종철 (국립기상과학원 응용기상연구과)
  • Received : 2018.10.22
  • Accepted : 2018.12.22
  • Published : 2018.12.31

Abstract

This study examines the impact of the urban parameterization scheme and the land cover change on simulated near surface temperature using Unified Model (UM) over the Seoul metropolitan area. We perform four simulations by varying the land cover and the urban parameterization scheme, and then compare the model results with 46 AWS observation data from 2 to 9 August 2016. Four simulations were performed with different combination of two urban parameterization schemes and two land cover data. Two schemes are Best scheme and MORUSES (Met Office Reading Urban Surface Exchange Scheme) and two land cover data are IGBP (International Geosphere and Biosphere Programme) and EGIS (Environmental Geographic information service) land cover data. When land use data change from IGBP to EGIS, urban ratio over the study area increased by 15.9%. The results of the study showed that the higher change in urban fraction between IGBP and EGIS, the higher the improvement in temperature performance, and the higher the urban fraction, the higher the effect of improving temperature performance of the urban parameterization scheme. 1.5-m temperature increased rapidly during the early morning due to increase of sensible heat flux in EXP2 compared to CTL. The MORUSES with EGIS (EXP3) provided best agreement with observations and represents a reasonable option for simulating the near surface temperature of urban area.

Keywords

KSHHDL_2018_v28n4_427_f0001.png 이미지

Fig. 1. Domain for Unified Model simulation and study area.

KSHHDL_2018_v28n4_427_f0002.png 이미지

Fig. 2. Surface type fractions of (a, b) broad leaf trees, (c, d) needle leaf trees, (e, f) C3 grass, and (g, h) C4 grass. Left and right panels are derived from the IGBP and EGIS data, respectively (126.6~127.6°E, 37.1~37.8°N).

KSHHDL_2018_v28n4_427_f0003.png 이미지

Fig. 3. Surface type fractions of (a, b) shrubs, (c, d) urban, (c, f) inland water, and (g, h) bare soil. Left and right panels are derived from the IGBP and EGIS data, respectively (126.6~127.6°E, 37.1~37.8°N).

KSHHDL_2018_v28n4_427_f0004.png 이미지

Fig. 4. (a) Scatter plot of IGBP versus EGIS urban land-use fractions and (b) Spatial distribution of the difference between IGBP and EGIS urban land-use fractions with AWS station numbers.

KSHHDL_2018_v28n4_427_f0005.png 이미지

Fig. 6. Spatial distribution of (a) 1.5-m temperature RMSE for CTL, the difference of 1.5-m temperature RMSE between CTL and (b) EXP1, (c) EXP2, and (d) EXP3.

KSHHDL_2018_v28n4_427_f0006.png 이미지

Fig. 7. Spatial distribution of (a) 1.5-m temperature, (b) surface temperature, and (c) sensible heat flux for CTL (left), EXP1 (middle), and EXP1 minus CTL (right), respectively. The spatial distribution is averaged for the entire period of simulation. The thin black contour in CTL, EXP1, and EXP1 minus CTL means over 30% of urban fraction using EGIS data. The thick contour in CTL, and EXP1 means the administrative boundary of Seoul.

KSHHDL_2018_v28n4_427_f0007.png 이미지

Fig. 8. Mean diurnal variation of simulated 1.5-m temperature (℃) over observation site of (a) Category A (fu(EGIS) − fu(IGBP) < 0), (b) Category B (0 ≤ fu(EGIS) − fu(IGBP) < 0.3), and (c) Category C (0.3 ≤ fu(EGIS) − fu(IGBP) < 1) with observation for the entire period of simulation. ‘fu’ describes the fraction of urban land-use of IGBP and EGIS cover within the model grid box for each station.

KSHHDL_2018_v28n4_427_f0008.png 이미지

Fig. 9. Diurnal variation of (a) sensible heat flux, (b) latent heat flux, and (c) storage heat flux for CTL (solid line) and EXP1 (dashed line) for the entire period on the observation site of Category C (0.3 ≤ fu(EGIS) − fu(IGBP) < 1).

KSHHDL_2018_v28n4_427_f0009.png 이미지

Fig. 10. Mean diurnal variation of simulated 1.5-m temperature (℃) over observation site of (a) Category 1 (fu(IGBP) < 0.3 and (b) Category 2 (fu(IGBP) ≥ 0.3) with observation for the entire period of simulation. ‘fu’ describes the fraction of urban land-use of IGBP cover within the model grid box for each station.

KSHHDL_2018_v28n4_427_f0010.png 이미지

Fig. 11. Diurnal variation of (a) sensible heat flux, (b) latent heat flux, and (c) storage heat flux for CTL (solid line) and EXP2 (dashed line) for the entire period on the observation site of Category 2 (fu(IGBP) ≥ 0.3).

KSHHDL_2018_v28n4_427_f0011.png 이미지

Fig. 5. Diurnal variation of (a) mean and (b) RMSE of the 1.5-m temperature for CTL, EXP1, EXP2, and EXP3 simulation for the entire period.

Table 1. Summary of numerical experiments.

KSHHDL_2018_v28n4_427_t0001.png 이미지

Table 2. Area average fraction of surface types over Seoul metropolitan for IGBP and EGIS data and differences between IGBP and EGIS (i.e., EGIS minus IGBP).

KSHHDL_2018_v28n4_427_t0002.png 이미지

Table 3. Model evaluation statistics for 1.5 m temperature (℃) during 2-9 August 2016.

KSHHDL_2018_v28n4_427_t0003.png 이미지

Table 4. RMSE of 1.5 m temperature (℃) for CTL and EXP1 with different urban fraction change category between IGBP and EGIS.

KSHHDL_2018_v28n4_427_t0004.png 이미지

Table 5. RMSE of 1.5 m temperature (℃) for CTL and EXP2 with different urban fraction category of IGBP.

KSHHDL_2018_v28n4_427_t0005.png 이미지

References

  1. Best, M. J., 2005: Representing urban areas within operational numerical weather prediction models. Bound.- Layer Meteor., 114, 91-109. https://doi.org/10.1007/s10546-004-4834-5
  2. Best, M. J., and C. S. B. Grimmond, 2015: Key conclusions of the first international urban land surface model comparison project. Bull. Amer. Meteor. Soc., 96, 805-819, doi:10.1175/BAMS-D-14-00122.1.
  3. Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699. https://doi.org/10.5194/gmd-4-677-2011
  4. Bohnenstengel, S. I., S. Evans, P. A. Clark, and S. E. Belcher, 2011: Simulations of the London urban heat island. Quart. J. Roy. Meteor. Soc., 137, 1625-1640. https://doi.org/10.1002/qj.855
  5. Byon, J.-Y., Y.-J. Choi, and B.-G. Seo, 2010: Evaluation of urban weather forecast using WRF-UCM (Urban Canopy Model) over Seoul. Atmosphere, 20, 13-26 (in Korean with English abstract).
  6. Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273-288, doi:10.1002/joc.2158.
  7. Chen, F., X. Yang, and W. Zhu, 2014: WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmos. Res., 138, 364-377, doi:10.1016/j.atmosres.2013.12.005.
  8. Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modeling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 1759-1782. https://doi.org/10.1256/qj.04.101
  9. Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689-719. https://doi.org/10.1002/qj.49712253107
  10. Grimmond, C. S. B., and C. Souch, 1994: Surface description for urban climate studies: A GIS based methodology. Geocarto Int., 9, 47-59. https://doi.org/10.1080/10106049409354439
  11. Grimmond, C. S. B., and T. R. Oke, 1999: Heat storage in urban areas: local-scale observations and evaluation of a simple model, J. Appl. Meteor. Climatol., 38, 922-240. https://doi.org/10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2
  12. Grimmond, C. S. B., and T. R. Oke, 2002: Turbulent heat fluxes in urban areas: Observations and a Local-scale Urban Meteorological Parameterization Scheme (LUMPS), J. Appl. Meteor. Climatol., 41, 792-810. https://doi.org/10.1175/1520-0450(2002)041<0792:THFIUA>2.0.CO;2
  13. Grossman-Clarke, S., J. A. Zehnder, T. Loridan, and C. S. B. Grimmond, 2010: Contribution of land use changes to near-surface air temperatures during recent summer extreme heat events in the Phoenix metropolitan area. J. Appl. Meteor. Climatol., 49, 1649-1664, doi:10.1175/2010JAMC2362.1.
  14. Kanda, M., T. Kawai, M. Kanega, R. Moriwaki, K. Narita, and A. Hagishima, 2005: A simple energy balance model for regular building arrays. Bound.-Layer Meteor., 116, 423-443. https://doi.org/10.1007/s10546-004-7956-x
  15. Kang, J.-H., and M.-S. Suh, 2011: Impacts of land surface boundary conditions on the short-range weather forecast of UM during summer season over East-Asia. Atmosphere, 21, 415-427 (in Korean with English abstract).
  16. Kang, J.-H., and M.-S. Suh, and C.-H. Kwak, 2007: A Comparison of the land cover data sets over Asian region: USGS, IGBP and UMd. Atmosphere, 17, 159-169 (in Korean with English abstract).
  17. Kusaka, H., H. Kondo, Y, Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329-358. https://doi.org/10.1023/A:1019207923078
  18. Lee, Y.-H., and K.-H. Min, 2016: Impact of urban canopy and high horizontal resolution on summer convective rainfall in urban area: A case of Rainfall Events on 16 August 2015. Atmosphere, 26, 141-158, doi:10.14191/Atmos.2016.26.1.141 (in Korean with English abstract).
  19. Li, D., and E. Bou-Zeid, 2014: Quality and sensitivity of high-resolution numerical simulation of urban heat islands. Environ. Res. Lett., 9, 055001, doi:10.1088/1748-9326/9/5/055001.
  20. Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187-3199. https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2
  21. Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357-397. https://doi.org/10.1023/A:1002463829265
  22. Oke, T. R., G. Mills, A. Christen, and J. A. Voogt, 2017: Urban Climates. Cambridge University Press, 546 pp.
  23. Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008: An urban parameterization for a global climate model. Part I: formulation and evaluation for two cities. J. Appl. Meteor. Climatol., 47, 1038-1060. https://doi.org/10.1175/2007JAMC1597.1
  24. Park, J. J., C. Y. Ku, and B. S. Kim, 2007: Improvement of the level-2 land cover map with satellite image. J. GIS Assoc. Kor., 15, 67-80 (in Korean with English abstract).
  25. Park, S.-H., J.-B. Jee, and C. Yi, 2015: Sensitivity test of the numerical simulation with high resolution topography and landuse over Seoul metropolitan and surrounding areas. Atmosphere, 25, 309-322 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2015.25.2.309
  26. Porson, A., P. A. Clark, I. N. Harman, M. J. Best, and S. E. Belcher, 2010a: Implementation of a new urban energy budget scheme in the MetUM. Part II: Validation against observations and model intercomparison. Quart. J. Roy. Meteor. Soc., 136, 1530-1542, doi:10.1002/qj.572.
  27. Porson, A., P. A. Clark, I. N. Harman, M. J. Best, and S. E. Belcher, 2010b: Implementation of a new urban energy budget scheme in the MetUM. Part I: Description and idealized simulations. Quart. J. Roy. Meteor. Soc., 136, 1514-1529, doi:10.1002/qj.668.
  28. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Technical Note, NCAR/TN-475+STR, 125 pp.
  29. United Nations, 2014: World Urbanization Prospects: The 2014 revision, Highlights. United Nations, 27 pp.
  30. Unnikrishnan, C. K., B. Gharai, S. Mohandas, A. Mamgain, E. N. Rajagopal, G. R. Iyengar, and P. V. N. Rao, 2016: Recent changes on land use/land cover over Indian region and its impact on the weather prediction using Unified model. Atmos. Sci. Lett., 17, 294-300, doi:10.1002/asl.658.
  31. Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Unified Model. Quart. J. Roy. Meteor. Soc., 129, 1989-2010. https://doi.org/10.1256/qj.02.133
  32. Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 1607-1636. https://doi.org/10.1002/qj.49712555707