DOI QR코드

DOI QR Code

Projection of Circum-Arctic Features Under Climate Change

미래 기후 변화 시나리오에 따른 환북극의 변화

  • Lee, Ji Yeon (Korea Polar Research Institute) ;
  • Cho, Mee-Hyun (Korea Polar Research Institute) ;
  • Koh, Youngdae (Department of Oceanography, Chonnam National University) ;
  • Kim, Baek-Min (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Jeong, Jee-Hoon (Department of Oceanography, Chonnam National University)
  • Received : 2018.09.14
  • Accepted : 2018.11.18
  • Published : 2018.12.31

Abstract

This study investigated future changes in the Arctic permafrost features and related biogeochemical alterations under global warming. The Community Land Model (CLM) with biogeochemistry (BGC) was run for the period 2005 to 2099 with projected future climate based on the Special Report on Emissions Scenarios (SRES) A2 scenario. Under global warming, over the Arctic land except for the permafrost region, the rise in soil temperature led to an increase in soil liquid and decrease in soil ice. Also, the Arctic ground obtained carbon dioxide from the atmosphere due to the increase in photosynthesis of vegetation. On the other hand, over the permafrost region, the microbial respiration was increased due to thawing permafrost, resulting in increased carbon dioxide emissions. Methane emissions associated with total water storage have increased over most of Arctic land, especially in the permafrost region. Methane releases were predicted to be greatly increased especially near the rivers and lakes associated with an increased chance of flooding. In conclusion, at the end of $21^{st}$ century, except for permafrost region, the Arctic ground is projected to be the sink of carbon dioxide, and only permafrost region the source of carbon dioxide. This study suggests that thawing permafrost can further to accelerate global warming significantly.

Keywords

KSHHDL_2018_v28n4_393_f0001.png 이미지

Fig. 1. Projection of permafrost region (a) at the present (Present, P: 2005-2017), (b) at the end of 21st century (Last, L: 2085-2099) and (c) difference between present and end of 21st century (red color : thawing region), (d), (e) and (f) same as (a), (b) and (c) but for soil temperature (g), (h) and (i) same as (a), (b) and (c) but for soil liquid, (j), (k) and (l) same as (a), (b) and (c) but for soil. Contour line is projection of active layer thickness (black line : < 3 m).

KSHHDL_2018_v28n4_393_f0002.png 이미지

Fig. 2. Same as Fig. 1 but for net ecosystem exchange (NEE) and total projected leaf area index (TLAI).

KSHHDL_2018_v28n4_393_f0003.png 이미지

Fig. 3. Time series for total ecosystem respiration (TER) and gross primary production (GPP) and net ecosystem exchange (NEE) in the arctic (60-90°N) and permafrost region under global warming.

KSHHDL_2018_v28n4_393_f0004.png 이미지

Fig. 4. Same as Fig.1 but for heterotrophic respiration (HR), root respiration (RR) and difference between heterotrophic respiration and root respiration (HR-RR).

KSHHDL_2018_v28n4_393_f0005.png 이미지

Fig. 5. Same as Fig. 3 but for heterotrophic respiration (HR), root respiration (RR) and difference between heterotrophic respiration and root respiration (HR-RR).

KSHHDL_2018_v28n4_393_f0006.png 이미지

Fig. 6. Same as Fig. 1 bur for methane (CH4) and total water storage (TWS).

KSHHDL_2018_v28n4_393_f0007.png 이미지

Fig. 7. Same as Fig. 3 but for methane (CH4).

References

  1. Anthony, K. M. W., P. Anthony, G. Grosse, and J. Chanton, 2012: Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat. Geosci., 5, 419-426, doi:10.1038/ngeo1480.
  2. Brown, J., and V. E. Romanovsky, 2008: Report from the International Permafrost Association: State of permafrost in the first decade of the 21st century. Permafrost Periglac., 19, 255-260. https://doi.org/10.1002/ppp.618
  3. Bunn, A. G., S. J. Goetz, J. S. Kimball, and K. Zhang, 2007: Northern high?latitude ecosystems respond to climate change. Eos. Transactions American Geophysical Union, 88, 333-335.
  4. Camill, P., 2005: Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Climatic Change, 68, 135-152. https://doi.org/10.1007/s10584-005-4785-y
  5. Cao, M., S. Marshall, and K. Gregson, 1996: Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model. J. Geophys. Res. Atmos., 101, 14399-14414 https://doi.org/10.1029/96JD00219
  6. Christensen, T. R., and Coauthors, 2003: Factors controlling large scale variations in methane emissions from wetlands. Geophys. Res. Lett., 30, 1414.
  7. Deconto, R. M., S. Galeotti, M. Pagani, D. Tracy, K. Schaefer, T. Zhang, D. Pollard, and D. J. Beerling, 2012: Past extreme warming events linked to massive carbon release from thawing permafrost. Nature, 484, 87-91, doi:10.1038/nature10929.
  8. Deque, M., and Coauthors, 2007: An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Climatic Change, 81, 53-70. https://doi.org/10.1007/s10584-006-9228-x
  9. Friedlingstein, P., and Coauthors, 2006: Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Climate, 19, 3337-3353. https://doi.org/10.1175/JCLI3800.1
  10. Hanson, P. J., N. T. Edwards, C. T. Garten, and J. A. Andrews, 2000: Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115-146. https://doi.org/10.1023/A:1006244819642
  11. Hicks Pries, C. E., E. A. Schuur, and K. G. Crummer, 2013: Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using ${\delta}13C$ and ${\Delta}14C$. Glob. Change. Biol., 19, 649-661, doi:10.1111/gcb.12058.
  12. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535 pp, doi:10.1017/CBO9781107415324.
  13. Jorgenson, M. T., Y. L. Shur, and E. R. Pullman, 2006: Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett., 33, L02503.
  14. Koven, C. D., W. J. Riley, and A. Stern, 2013: Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J. Climate, 26, 1877-1900, doi:10.1175/JCLI-D-12-00228.1.
  15. Koven, C. D., D. M. Lawrence, and W. J. Riley, 2015: Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl Acad. Sci., 112, 3752-3757, doi:10.1073/pnas.1415123112.
  16. Lawrence, D. M., A. G. Slater, and S. C. Swenson, 2012: Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J. Climate, 25, 2207-2225, doi:10.1175/JCLI-D-11-00334.1.
  17. Lawrence, D. M., C. D. Koven, S. C. Swenson, W. J. Riley, and A. G. Slater, 2015: Permafrost thaw and resulting soil moisture changes regulate projected high-latitude $CO_2$ and $CH_4$ emissions. Environ. Res. Lett., 10, 094011, doi:10.1088/1748-9326/10/9/094011.
  18. Li, H., J. Sheffield, and E. F. Wood, 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. Atmos., 115, D10101, doi:10.1029/2009JD012882.
  19. Lombardi, L., E. Carnevale, and A. Corti, 2006: Greenhouse effect reduction and energy recovery from waste landfill. Energy, 31, 3208-3219. https://doi.org/10.1016/j.energy.2006.03.034
  20. Nakano, T., S. Kuniyoshi, and M. Fukuda, 2000: Temporal variation in methane emission from tundra wetlands in a permafrost area, northeastern Siberia. Atmos. Environ., 34, 1205-1213. https://doi.org/10.1016/S1352-2310(99)00373-8
  21. Oleson, K. W., and Coauthors, 2013: Technical Description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp.
  22. Quinton, W. L., M. Hayashi and L. E. Chasmer, 2011: Permafrost- thaw-induced land-cover change in the Canadian subarctic: implications for water resources. Hydrol. Process., 25, 152-158, doi:10.1002/hyp.7894.
  23. Riley, W. J., Z. M. Subin, D. M. Lawrence, S. C. Swenson, M. S. Torn, L. Meng, N. M. Mahowald, and P. Hess, 2011: Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences, 8, 1925-1953, doi:10.5194/bg-8-1925-2011.
  24. Romanovsky, V. E., S. L. Smith, and H. H. Christiansen, 2010: Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007- 2009: a synthesis. Permafrost Periglac., 21, 106-116. https://doi.org/10.1002/ppp.689
  25. Schuur, E. A. G., J. G. Vogel, K. G. Crummer, H. Lee, J. O. Sickman, and T. E. Osterkamp, 2009: The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556-559. https://doi.org/10.1038/nature08031
  26. Schuur, E. A. G., and Coauthors, 2013: Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 119, 359-374, doi:10.1007/s10584-013-0730-7.
  27. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485-498, doi:10.1175/BAMSD-11-00094.1.
  28. Wu, Q., and T. Zhang, 2010: Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J. Geophys. Res. Atmos., 115, D09107, doi: 10.1029/2009JD012974.
  29. Xie, K., Y. Zhang, G. Meng, and J. T. Irvine, 2011: Direct synthesis of methane from $CO_2$/$H_2O$ in an oxygenion conducting solid oxide electrolyser. Energ. Environ. Sci., 4, 2218-2222, doi:10.1039/C1EE01035B.