DOI QR코드

DOI QR Code

Broad Dual-band Metamaterial Filter with Sharp Out-of-band Rejections

  • Qi, Limei (School of Electronic Engineering, Beijing University of Posts and Telecommunications) ;
  • Shah, Syed Mohsin Ali (School of Electronic Engineering, Beijing University of Posts and Telecommunications)
  • Received : 2018.09.11
  • Accepted : 2018.11.26
  • Published : 2018.12.25

Abstract

A broad dual-band terahertz metamaterial filter with sharp out-of-band rejections is designed and demonstrated. The center frequencies of the first and the second bands occur at 0.35 THz and 0.96 THz with 3 dB relative bandwidth of 31% and 17%, respectively. Results are measured using a THz time-domain spectroscopy system that shows agreement with simulations. Physical mechanisms of the broad dual-band resonance are clarified based on transmissions of different structures and surface current density distributions. Influence of structure parameters on the transmission characteristics are discussed. Symmetry of the structure ensures the filter polarization independence at normal incidence. These results supported by the design of the filter could find applications in broad multi-band sensors, terahertz communication systems, and other emerging terahertz technologies.

Keywords

KGHHD@_2018_v2n6_629_f0001.png 이미지

FIG. 1. Schematic view of the fourfold rotational symmetry filter, where P = 150, R = 70, W= 13, and h = 120 (all sizes in μm). (a) top view, (b) side view, microscope images of the fabricated sample at scale (c) 50 μm and (d) 100 μm.

KGHHD@_2018_v2n6_629_f0002.png 이미지

FIG. 2. The measured (solid line) and simulated (dash line) transmission curves for the broad dual-band filter at normal incidence.

KGHHD@_2018_v2n6_629_f0003.png 이미지

FIG. 3. Influence of (a) metal material and (b) dielectric loss on the transmission.

KGHHD@_2018_v2n6_629_f0004.png 이미지

FIG. 4. Transmission for the dielectric only (dotted line), single metal-dielectric structure (MD, dot-dashed line) and metal-dielectric-metal structure (MDM, solid line). The parameters are same as those in Fig. 1.

KGHHD@_2018_v2n6_629_f0005.png 이미지

FIG. 5. Surface current density distributions of the two pass bands. The yellow parts indicate the metallic Al layers, red lines with arrows indicate instantaneous directions of the current flow. (a) The top layer and (b) bottom layer of f1 = 0.311 THz. (c) The top layer and (d) bottom layer of f2 = 0.383 THz. (e) The top layer and (f) bottom layer of f3 = 0.898 THz. (g) The top layer and (h) bottom layer of f4 = 1.019 THz.

KGHHD@_2018_v2n6_629_f0006.png 이미지

FIG. 6. Transmission for different period and radius (a) period P, and (b) radius R.

KGHHD@_2018_v2n6_629_f0007.png 이미지

FIG. 7. Transmission for different width and substrate thickness (a) width w, and (b) substrate thickness h.

KGHHD@_2018_v2n6_629_f0008.png 이미지

FIG. 8. Transmission of oblique incidence for (a) TE and (b) TM polarization.

References

  1. D. M. Mittlemana, "Perspective: terahertz science and technology," J. Appl. Phys. 122, 230901 (2017). https://doi.org/10.1063/1.5007683
  2. Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-Mac. Pherson, "Recent advances in terahertz technology for biomedical applications," Quant. Imaging Med. Surg. 7, 345-355 (2017). https://doi.org/10.21037/qims.2017.06.02
  3. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. C. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1491-1496, 2004.
  4. F. Ling, Z. Zhong, R. Huang, and B. Zhang, "A broadband tunable terahertz negative refractive index metamaterial," Sci. Rep. 8, 9843 (2018). https://doi.org/10.1038/s41598-018-28221-3
  5. H. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active metamaterial terahertz devices," Nature 444, 597-600 (2006). https://doi.org/10.1038/nature05343
  6. Z. Huang, Q. Han, C. Ji, J. Wang, and Y. Jiang "Broadband terahertz modulator based on graphene metamaterials," AIP Adv. 8, 035304 (2018). https://doi.org/10.1063/1.5018261
  7. Y. Demirhan, H. Alaboz, M. A. Nebioğlu, B. Mulla, M. Akkaya, H. Altan, C. Sabah, and L. Ozyuzer, "Fourcross shaped metamaterial filters fabricated from high temperature superconducting YBCO and Au thin films for terahertz waves," Supercond. Sci. Technol. 30, 074006 (2017). https://doi.org/10.1088/1361-6668/aa6fbe
  8. X. Zhang, J. Gu, W. Cao, J. Han, A. Lakhtakia, and W. Zhang, "Bilayer-fish-scale ultrabroad terahertz bandpass filter," Opt. Lett. 37, 906-908 (2012). https://doi.org/10.1364/OL.37.000906
  9. L. Wang, Z. Geng, X. He, Y. Cao, Y. Yang, and H. Chen, "Realization of band-pass and low-pass filters on a single chip in terahertz regime," Optoelec. Lett. 11, 33-35 (2015). https://doi.org/10.1007/s11801-015-4200-5
  10. A. K. Azad, Y. Zhao, W. Zhang, and M. He, "Effect of dielectricproperties of metals on terahertz transmission subwavelength hole arrays," Opt. Lett. 31, 2637-2639 (2006). https://doi.org/10.1364/OL.31.002637
  11. X. Lu, J. Han, and W. Zhang, "Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles," Appl. Phys. Lett. 92, 121103 (2008). https://doi.org/10.1063/1.2902292
  12. J. Li, "Terahertz wave narrow bandpass filter based on photonic crystal," Opt. Commun. 283, 2647-2650 (2010). https://doi.org/10.1016/j.optcom.2010.02.046
  13. J. Han, J. Gu, X. Lu, M. He, Q. Xing, and W. Zhang, "Broadband resonant terahertz transmission in a composite metal-dielectric structure," Opt. Express 17, 16527-16534 (2009). https://doi.org/10.1364/OE.17.016527
  14. O. Paul, R. Beigang, and M. Rahm, "Highly selective terahertz bandpass filters based on trapped mode excitation," Opt. Express 17, 18590-18595 (2009). https://doi.org/10.1364/OE.17.018590
  15. H. J. Song and T. Nagatsuma, "Present and future of terahertz communications," IEEE Trans. Terahertz Sci. Technol. 1, 256-263 (2011). https://doi.org/10.1109/TTHZ.2011.2159552
  16. T. Kleine-Ostmann and T. Nagatsuma, "A review on terahertz communications research," J. Infrared Millim. Terahertz Waves 32, 143-171 (2011). https://doi.org/10.1007/s10762-010-9758-1
  17. C. Guo, H. Sun, and X. Lu, "A novel dual band frequency selective surface with periodic cell perturbation," Prog. Electromagn. Res. B 9,137-149 (2008). https://doi.org/10.2528/PIERB08071302
  18. Y. Chiang and T. Yen, "A high-transmission dual band terahertz bandpass filter by exciting multiresonance of metamaterials," Proc. SPIE 8070, Metamaterials VI, 80700V (2011).
  19. O. Karakilinc and M. Dinley, "Design of dual-mode dual-band photonic crystal bandpass filters for terahertz communication applications," Microwave Opt. Technol. Lett. 57, 1806-1810 (2015). https://doi.org/10.1002/mop.29196
  20. X. Chen and W. Fan, "A multiband THz bandpass filter based on multiple-resonance excitation of a composite metamaterial," Mater. Res. Express 2, 055801 (2015). https://doi.org/10.1088/2053-1591/2/5/055801
  21. M. Lu, W. Li, and E. R. Brown, "Second-order bandpass THz filter achieved by multilayer complementary metamaterial structures," Opt. Lett. 36, 1071-1073 (2011). https://doi.org/10.1364/OL.36.001071
  22. F. Lan, Z. Yang, L. Qi, X. Gao, and Z. Shi, "Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures," Opt. Lett. 39, 1709-1712 (2014). https://doi.org/10.1364/OL.39.001709
  23. L. Qi and C. Li, "Multi-band terahertz filter with independence to polarization and insensitivity to incidence angles," J. Infrared, Millimeter, Terahertz Waves 36, 1137-1144 (2015). https://doi.org/10.1007/s10762-015-0202-4
  24. L. Qi, C. Li, G. Fang, and S. Li, "Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots," Chin. Phys. B 24, 107802 (2015). https://doi.org/10.1088/1674-1056/24/10/107802
  25. H. Chen, J. F. O'Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, "Complementary planar terahertz metamaterials," Opt. Express 15, 1084-1095 (2007). https://doi.org/10.1364/OE.15.001084
  26. X. Liu, D. A. Powell, and A.Alu, "Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures," Phys. Rev. B 84, 235106 (2011). https://doi.org/10.1103/PhysRevB.84.235106
  27. Z. Zhao, H. Zhao, W. Peng, and W. Shi, "Polarization dependence of terahertz Fabry-Pérot resonance in flexible complementary metamaterials," Plasmonics 10, 1587-1592 (2015). https://doi.org/10.1007/s11468-015-9982-6
  28. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry," Phys. Rev. Lett. 99, 147401 (2007). https://doi.org/10.1103/PhysRevLett.99.147401
  29. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial analog of electromagnetically induced transparency," Phys. Rev. Lett. 101, 253903 (2008). https://doi.org/10.1103/PhysRevLett.101.253903
  30. T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T. Huang, and T. Yen, "Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials," Opt. Express 20, 7580-7589 (2012). https://doi.org/10.1364/OE.20.007580
  31. B. A. Munk, Frequency Selective Surfaces: Theory and Design, 1st Edn. (John Wiley and Sons Inc., 2000), pp. 5, 393.