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RECURRENCE RELATIONS FOR HIGHER ORDER

MOMENTS OF A COMPOUND BINOMIAL RANDOM

VARIABLE

Donghyun Kim and Yoora Kim∗

Abstract. We present new recurrence formulas for the raw and central

moments of a compound binomial random variable. Our approach involves
relating two compound binomial random variables that have parameters

with a difference of 1 for the number of trials, but which have the same

parameters for the success probability for each trial. As a consequence of
our recursions, the raw and central moments of a binomial random variable

are obtained in a recursive manner without the use of Stirling numbers.

1. Introduction

Let {Xi, i = 1, 2, . . . } be a sequence of independent and identically dis-
tributed random variables. A compound random variable SN is defined as

SN = X1 +X2 + · · ·+XN ,

where N is a non-negative integer-valued random variable and is independent
of {Xi, i = 1, 2, . . . }. If N = 0, then SN = 0. This compound random variable
has received special attention in collective risk theory, in which the random
variables Xi, N, and SN represent the amount of a claim, the number of claims
in a certain period, and the aggregate claims of a portfolio, respectively (see
e.g., [8]).

In this paper, we consider SN when N follows a binomial distribution. In
this case, SN is called a compound binomial random variable. The compound
binomial distribution reduces to a binomial distribution if Xi is degenerate with
P(Xi = 1) = 1. In this paper, we address the moments of a compound binomial
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random variable. We also address the moments of a binomial random variable
as a special case of a compound binomial random variable.

For some class of compound random variables, recurrence formulas for higher-
order moments have been presented by De Pril [2], Hesselager [6], Murat and
Szynal [9], [10], and Sundt [13]. In particular, the results in [2], [9], [10], [13]
apply to compound binomial random variables (we present the details in Sec-
tion 5). Grubbström and Tang [5] presented closed-form formulas for the mo-
ments of a compound random variable having Xi ≥ 0. In computing the mo-
ments of a binomial random variable, Stirling numbers have often been utilized.
Bényi [1] and Griffiths [4] derived recurrence formulas for the moments of a bi-
nomial random variable using Stirling numbers of the first kind. Knoblauch [7]
derived closed-form formulas for the moments of a binomial random variable
using Stirling numbers of the second kind. González and Santana [3] presented
a new recurrence formula for the moments of a binomial random variable using
a combinatorial identity.

The main purpose of this paper is two-fold. (i) We derive a new recurrence
formula for the raw and central moments of a compound binomial random vari-
able. (ii) From this recursion, one can obtain the raw and central moments of
a binomial random variable in a recursive manner without the use of Stirling
numbers. To this end, in Section 2, we first give a relation between two com-
pound binomial random variables that have parameters with a difference of 1
for the number of trials, but which have the same parameters for the success
probability for each trial. Based on this relation, we next derive our main re-
sults on the raw and central moments in Sections 3 and 4, respectively. Finally,
in Section 5, we deduce recursions from results in the existing literature on the
moments of a compound random variable.

2. Preliminary lemma

Let N1 be a binomial random variable with parameters n and p, and N2

be the one with parameters n − 1 and p, where n ∈ {2, 3, . . . } and p ∈ [0, 1].
Lemma 2.1 presents a relation between SN1

and SN2
.

Lemma 2.1. For any function f : R→ R and constant c ∈ R,

E
[
(SN1

− c)f(SN1
− c)

]
= E[N1]E

[
Xf(SN2

+X − c)
]
− cE

[
f(SN1

− c)
]
,

where X
d
= Xi (i ∈ N) and is independent of SN2

.

Proof. By the linearity of expectation, we immediately have

E
[
(SN1

− c)f(SN1
− c)

]
= E

[
SN1

f(SN1
− c)

]
− cE

[
f(SN1

− c)
]
. (2.1)

In the following, we will show that the first term on the right-hand side of (2.1)
satisfies

E
[
SN1

f(SN1
− c)

]
= E[N1]E

[
Xf(SN2

+X − c)
]
.
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By conditioning on N1,

E
[
SN1

f(SN1
− c)

]
=

n∑
k=0

P(N1 = k)E
[
SN1

f(SN1
− c) |N1 = k

]
=

n∑
k=0

(
n

k

)
pk(1− p)n−k E

[
Skf(Sk − c)

]
, (2.2)

where the second equality follows from the independence of {Xi, i = 1, 2, . . . }
and N1. Since X1, X2, . . . are independent and identically distributed, the ex-
pectation E

[
Skf(Sk − c)

]
is simplified as

E
[
Skf(Sk − c)

]
=

k∑
i=1

E

Xif

 k∑
j=1

Xj − c

 = kE
[
Xkf(Sk − c)

]
. (2.3)

Substituting (2.3) into (2.2) and then using the change of variables l = k − 1,

E
[
SN1

f(SN1
− c)

]
=

n∑
k=0

(
n

k

)
pk(1− p)n−k kE

[
Xkf(Sk − c)

]
= np

n∑
k=1

(n− 1)!

(k − 1)!(n− k)!
pk−1(1− p)n−k E

[
Xkf(Sk − c)

]
= E[N1]

n∑
k=1

P(N2 = k − 1)E
[
Xkf(Sk − c)

]
= E[N1]

n−1∑
l=0

P(N2 = l)E
[
Xl+1f(Sl+1 − c)

]
. (2.4)

By the independence of N2 and {Xi, i = 1, 2, . . . }, the expectation on the right-
hand side of (2.4) can be expressed as

E
[
Xl+1f(Sl+1 − c)

]
= E

[
Xl+1f(Sl +Xl+1 − c)

]
= E

[
Xl+1f(Sl +Xl+1 − c) |N2 = l

]
= E

[
XN2+1f(SN2 +XN2+1 − c) |N2 = l

]
= E

[
Xf(SN2

+X − c) |N2 = l
]
. (2.5)

Therefore, substituting (2.5) into (2.4), we have

E
[
SN1

f(SN1
− c)

]
= E[N1]

n−1∑
l=0

P(N2 = l)E
[
Xf(SN2

+X − c) |N2 = l
]

= E[N1]E
[
E
[
Xf(SN2 +X − c) |N2

]]
= E[N1]E

[
Xf(SN2

+X − c)
]
.

This completes the proof. �
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Note that Peköz and Ross [12, Theorem 2.1] presented an identity similar
to Lemma 2.1 in the case c = 0 and utilized the identity to obtain recurrence
formulas for the probability mass function of compound random variables having
positive integer-valued Xi.

3. Raw moments

Using Lemma 2.1 with f(x) = xk and c = 0, we can derive a recurrence
formula for the raw moments as follows.

Theorem 3.1. For a binomial random variable N with parameters n ∈ N and
p ∈ [0, 1], let αk(n, p) = E[(SN )k] and µk(n, p) = E[Nk] denote the kth raw
moments of SN and N , respectively. Then,

αk+1(n, p) = np

k∑
i=0

(
k

i

)
E[Xk+1−i]αi(n− 1, p),

µk+1(n, p) = np

k∑
i=0

(
k

i

)
µi(n− 1, p),

where X
d
= Xi (i ∈ N).

Proof. We apply f(x) = xk and c = 0 to Lemma 2.1. Then,

E
[
SN1

(SN1
)k
]

= E[N1]E
[
X(SN2

+X)k
]
. (3.1)

Since N1
d
= N , the left-hand side of (3.1) can be expressed as

E
[
SN1

(SN1
)k
]

= E
[
(SN )k+1

]
= αk+1(n, p). (3.2)

In addition, the right-hand side of (3.1) satisfies

E[N1]E
[
X(SN2

+X)k
]

= npE

[
X

k∑
i=0

(
k

i

)
(SN2

)iXk−i

]

= np

k∑
i=0

(
k

i

)
E
[
(SN2)i]E[Xk+1−i

]
= np

k∑
i=0

(
k

i

)
αi(n− 1, p)E[Xk+1−i], (3.3)

where the second equality follows from the independence of SN2
and X. Sub-

stituting (3.2) and (3.3) into (3.1) gives the first recursion in Theorem 3.1.
If Xi is degenerate with P(Xi = 1) = 1, we have αk(n, p) = µk(n, p) and

E[Xj ] = 1 for all j ∈ N. Hence, the second recursion in Theorem 3.1 follows
immediately from the first recursion for Xi such that P(Xi = 1) = 1. �
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Starting from the initial value α0(n, p) = 1, we can find αk(n, p) in a recursive
manner using Theorem 3.1. For example, we have

α0(n, p) = 1,

α1(n, p) = np

(
0

0

)
E[X1]α0(n− 1, p)︸ ︷︷ ︸

=1

= npE[X],

α2(n, p) = np

[(
1

0

)
E[X2]α0(n− 1, p)︸ ︷︷ ︸

=1

+

(
1

1

)
E[X1]α1(n− 1, p)︸ ︷︷ ︸

=(n−1)pE[X]

]
= npE[X2] + n(n− 1)p2(E[X])2,

α3(n, p) = np

[(
2

0

)
E[X3]α0(n− 1, p)︸ ︷︷ ︸

=1

+

(
2

1

)
E[X2]α1(n− 1, p)︸ ︷︷ ︸

=(n−1)pE[X]

+

(
2

2

)
E[X1]α2(n− 1, p)︸ ︷︷ ︸

=(n−1)pE[X2]+(n−1)(n−2)p2(E[X])2

]
= npE[X3] + 3n(n− 1)p2E[X2]E[X] + n(n− 1)(n− 2)p3(E[X])3.

Similarly as above, we can find µk(n, p) in a recursive manner using Theorem 3.1.
For example, we have

µ0(n, p) = 1,

µ1(n, p) = np

(
0

0

)
µ0(n− 1, p)︸ ︷︷ ︸

=1

= np,

µ2(n, p) = np

[(
1

0

)
µ0(n− 1, p)︸ ︷︷ ︸

=1

+

(
1

1

)
µ1(n− 1, p)︸ ︷︷ ︸

=(n−1)p

]
= np+ n(n− 1)p2,

µ3(n, p) = np

[(
2

0

)
µ0(n− 1, p)︸ ︷︷ ︸

=1

+

(
2

1

)
µ1(n− 1, p)︸ ︷︷ ︸

=(n−1)p

+

(
2

2

)
µ2(n− 1, p)︸ ︷︷ ︸

=(n−1)p+(n−1)(n−2)p2

]
= np+ 3n(n− 1)p2 + n(n− 1)(n− 2)p3.

4. Central moments

Using Lemma 2.1 with f(x) = xk and c = E[SN ], we can derive a recurrence
formula for the central moments as follows.

Theorem 4.1. For a binomial random variable N with parameters n ∈ N and
p ∈ [0, 1], let βk(n, p) = E

[
(SN − E[SN ])k

]
and σk(n, p) = E

[
(N − E[N ])k

]
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denote the kth central moments of SN and N , respectively. Then,

βk+1(n, p) = np

{
k∑

i=0

(
k

i

)
E
[
X(X − pE[X])k−i

]
βi(n− 1, p)− E[X]βk(n, p)

}
,

σk+1(n, p) = np

{
k∑

i=0

(
k

i

)
(1− p)k−iσi(n− 1, p)− σk(n, p)

}
,

where X
d
= Xi (i ∈ N).

Proof. The proof is similar to the one used for Theorem 3.1. We first apply
f(x) = xk and c = E[SN1

] to Lemma 2.1. Then,

E
[
(SN1 − E[SN1 ])(SN1 − E[SN1 ])k

]
= E[N1]E

[
X(SN2 +X − E[SN1 ])k

]
− E[SN1 ]E

[
(SN1 − E[SN1 ])k

]
.

(4.1)

Since N1
d
= N , the left-hand side of (4.1) can be expressed as

E
[
(SN1

− E[SN1
])(SN1

− E[SN1
])k
]

= E
[
(SN − E[SN ])k+1

]
= βk+1(n, p). (4.2)

The first term on the right-hand side of (4.1) satisfies

E[N1]E
[
X(SN2

+X − E[SN1
])k
]

= npE
[
X(SN2

− E[SN2
] +X + E[SN2

]− E[SN1
])k
]

= npE

[
X

k∑
i=0

(
k

i

)(
SN2 − E[SN2 ]

)i(
X + E[SN2 ]− E[SN1 ]

)k−i

]

= np

k∑
i=0

(
k

i

)
E
[
(SN2

− E[SN2
])i
]
E
[
X(X + E[SN2

]− E[SN1
])k−i

]
.

Note that E
[
(SN2 − E[SN2 ])i

]
= βi(n− 1, p). In addition, by Wald’s equality,

E[SN2
]− E[SN1

] = (n− 1)pE[X]− npE[X] = −pE[X].

Hence, the first term on the right-hand side of (4.1) reduces to

E[N1]E
[
X(SN2

+X − E[SN1
])k
]

= np

k∑
i=0

(
k

i

)
βi(n− 1, p)E

[
X(X − pE[X])k−i

]
,

(4.3)

whereas the second term on the right-hand side of (4.1) reduces to

E[SN1
]E
[
(SN1

− E[SN1
])k
]

= npE[X]βk(n, p). (4.4)

Substituting (4.2), (4.3), and (4.4) into (4.1) gives the first recursion in The-
orem 4.1. The second recursion in Theorem 4.1 follows immediately from the
first recursion for Xi such that P(Xi = 1) = 1. �
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Starting from the initial value β0(n, p) = 1, we can find βk(n, p) in a recursive
manner using Theorem 4.1. For example, we have

β0(n, p) = 1,

β1(n, p) = np

[(
0

0

)
E[X]β0(n− 1, p)︸ ︷︷ ︸

=1

−E[X]β0(n, p)︸ ︷︷ ︸
=1

]
= 0,

β2(n, p) = np

[(
1

0

)
E
[
X(X − pE[X])

]
β0(n− 1, p)︸ ︷︷ ︸

=1

+

(
1

1

)
E[X]β1(n− 1, p)︸ ︷︷ ︸

=0

− E[X]β1(n, p)︸ ︷︷ ︸
=0

]
= npE[X2]− np2(E[X])2,

β3(n, p) = np

[(
2

0

)
E
[
X(X − pE[X])2

]
β0(n− 1, p)︸ ︷︷ ︸

=1

+

(
2

1

)
E
[
X(X − pE[X])

]
β1(n− 1, p)︸ ︷︷ ︸

=0

+

(
2

2

)
E[X] β2(n− 1, p)︸ ︷︷ ︸

=(n−1)pE[X2]−(n−1)p2(E[X])2

−E[X] β2(n, p)︸ ︷︷ ︸
=npE[X2]−np2(E[X])2

]
= npE[X3]− 3np2E[X2]E[X] + 2np3(E[X])3.

Similarly as above, we can find σk(n, p) in a recursive manner using Theorem 4.1.
For example, we have

σ0(n, p) = 1,

σ1(n, p) = np

[(
0

0

)
σ0(n− 1, p)︸ ︷︷ ︸

=1

−σ0(n, p)︸ ︷︷ ︸
=1

]
= 0,

σ2(n, p) = np

[(
1

0

)
(1− p)σ0(n− 1, p)︸ ︷︷ ︸

=1

+

(
1

1

)
σ1(n− 1, p)︸ ︷︷ ︸

=0

−σ1(n, p)︸ ︷︷ ︸
=0

]
= np− np2,

σ3(n, p) = np

[(
2

0

)
(1− p)2 σ0(n− 1, p)︸ ︷︷ ︸

=1

+

(
2

1

)
(1− p)σ1(n− 1, p)︸ ︷︷ ︸

=0

+

(
2

2

)
σ2(n− 1, p)︸ ︷︷ ︸

=(n−1)p−(n−1)p2

− σ2(n, p)︸ ︷︷ ︸
=np−np2

]
= np− 3np2 + 2np3.
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5. Discussion

In this section, we deduce recursions from results in the existing literature
on the moments of a compound random variable.

Consider a class of random variables satisfying

P(N = n) =

(
a+

b

n

)
P(N = n− 1), n = 1, 2, . . . , (5.1)

for some constants a < 1 and a + b ≥ 0. This family of distributions was
considered by Panjer [11] and is often referred to as Panjer’s class. Note that a
binomial random variable with parameters n and p belongs to the Panjer’s class
with a = −p/(1−p) and b = (n+1)p/(1−p). For a compound random variable
SN with N satisfying (5.1), the following result was proved in various ways by
De Pril [2, Theorem], Murat and Szynal [9, Theorem 3.1], [10, Theorem 4.1],
and Sundt [13, Equations (6) and (8)]:

(1− a)E[(SN − c)k+1]

=

k∑
i=0

(
k

i

){(
k + 1

i+ 1
a+ b

)
E[Xi+1] + acE[Xi]

}
E[(SN − c)k−i]

− cE[(SN − c)k].

(5.2)

Applying (5.2) with c = 0, a = −p/(1 − p) and b = (n + 1)p/(1 − p) gives a
recurrence formula for the raw moments αk(n, p) and µk(n, p) as follows:

αk+1(n, p) = p

k∑
i=0

(
k

i

)(
n− k − i

i+ 1

)
E[Xi+1]αk−i(n, p),

µk+1(n, p) = p

k∑
i=0

(
k

i

)(
n− k − i

i+ 1

)
µk−i(n, p).

Similarly, the central moments βk(n, p) and σk(n, p) are obtained as follows:

βk+1(n, p) = p

k∑
i=0

(
k

i

){(
n− k − i

i+ 1

)
E[Xi+1]− npE[X]E[Xi]

}
βk−i(n, p)

− np(1− p)E[X]βk(n, p),

σk+1(n, p) = p

k∑
i=0

(
k

i

){
n(1− p)− k − i

i+ 1

}
σk−i(n, p)− np(1− p)σk(n, p).

Clearly, the recurrence relations presented in Theorems 3.1 and 4.1 have
different expressions than those deduced from (5.2). This difference arises due
to the following reason. In order to derive (5.2), moment-generating functions or
some identities were used for fixed a and b (i.e., fixed n and p). In this paper, we
take a different approach by relating two compound binomial random variables
with parameter pairs (n, p) and (n − 1, p) for the number of trials and the
success probability (i.e., varying n and fixed p). This approach leads to a new
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recurrence formula for the moments of a compound binomial random variable.
Our new formula can be useful when dealing with compound binomial random
variables with varying number of trials.
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