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DEFINING EQUATIONS OF RATIONAL CURVES IN

SMOOTH QUADRIC SURFACE

Wanseok LEE and Shuailing Yang

Abstract. For a nondegenerate irreducible projective variety, it is a clas-

sical problem to study the defining equations of a variety with respect to

the given embedding. In this paper we precisely determine the defining
equations of certain types of rational curves in P3.

1. Introduction

We work over an algebraically closed field k of arbitrary characteristic. Let Pr

and R = k[X0, X1, . . . , Xr] denote respectively the projective r-space over k
and the homogeneous coordinate ring of Pr. Let Z ⊂ Pr be a nondegenerate
irreducible variety and let IZ be the homogeneous ideal of Z inR. To understand
the variety Z, it is natural to study the defining equations of Z and the syzygies
among them. Also the classical problem to find an upper bound of the maximal
degree of a minimal generator of IZ has been reformulated as describing the
minimal free resolution of IZ . About these problems, there were several results
[7], [9], [11], [12], [13], [14], [15], [17], [23], [27] and so on. Nevertheless, it is still
the most fundamental but difficult problem to determine the defining equations
of Z precisely, namely the minimal generators of IZ .

In this paper, we would like to focus our interest on the problem to describe
the equations defining the rational curves. Let T := k[s, t] be the homoge-
neous coordinate ring of P1. For each k ≥ 1, we denote by Tk the k-th graded
component of T . Let C ⊂ Pr be a nondegenerate smooth rational curve of
degree d ≥ r. As is well known, there exists a subset {f0, f1, . . . , fr} ⊂ Td of
k-linearly independent forms of degree d such that the curve C is given by a
parametrization

C = {[f0(P ) : f1(P ) : · · · : fr(P )] | P ∈ P1}.
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As the most simplest case, the rational normal curve C ⊂ Pr of degree d is a
smooth rational curve with the condition r = d. Then it can be defined to be a
image of the map νd : P1 → Pd parameterized by

C = {[sd(P ) : sd−1t(P ) : · · · : std−1(P ) : td(P )] | P ∈ P1}. (1)

The almost all algebraic and geometric properties of C are very well understood.
Also it is well-known that C is defined by the common zero locus of the polyno-
mials Fi,j = XiXj −Xi−1Xj−1 for 1 ≤ i ≤ j ≤ r − 1. For the next case where
d = r + 1, there are several results about algebraic and geometric properties
of C ([1], [2], [3], [4], [5], [6], [16], [18], [19],[21], [22], [24], [25], [26],[26] and so
on). However about the problem to describe the defining equations of C, almost
nothing is known in general for the author’s knowledge. In this short note, as a
beginning of this problem we study the rational curve Cd ⊂ P3 parameterized
as

Cd = {[sd(P ) : sd−1t(P ) : std−1(P ) : td(P )] | P ∈ P1}.
This parametrization of Cd is a kind of generalization of the rational normal
curve C ⊂ P3 of degree 3 in (1). Then the curve Cd is a smooth rational
curve of degree d contained in a smooth rational rational normal surface scroll
S(1, 1)(see Lemma 3.1 and Proposition 3.2). These investigations enable us to
determine the precise shapes of the minimal generators of the homogenous ideal
ICd

of Cd. The following is the our main result.

Theorem 1.1. Let Cd ⊂ P3 be a rational curve defined as the parametrization

Cd = {[sd(P ) : sd−1t(P ) : std−1(P ) : td(P )] | P ∈ P1}

where d ≥ 3. Then

(1) The curve Cd is a smooth rational curve of degree d contained in the
rational normal surface scroll S(1, 1) as a divisor linear equivalent to
H + (d − 2)F where H and F are respectively the hyperplane section
and a ruling line.

(2) Cd is of maximal regularity d−1 in the sense of Castelnuovo-Mumford.

(3) The defining ideal ICd
of Cd is minimally generated as following:

ICd
= 〈X0X3 −X1X2, Fd,1, Fd,2, . . . , Fd,d−1〉

where Fd,i = Xd−i−1
0 Xi

2 −Xd−i
1 Xi−1

3 for 1 ≤ i ≤ d− 1.

2. Preliminaries

2.1. Rational normal surface scrolls and its divisors

We begin with recalling a standard description of rational normal surface
scrolls (cf. [28]). For the vector bundle

E = OP1(a1)⊕OP1(a2)
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on P1 where 0 ≤ a1 ≤ a2 and a2 > 0, the tautological line bundle OP(E)(1)
of P(E) is globally generated and we write S(a1, a2) for the image of the map
defined by OP(E)(1).

(A) It is well-known that S(a1, a2) is a normal variety and has only rational
singularities. Also the homogeneous ideal of S(a1, a2) is generated by
quadratic equations.

(B) The divisor class group of P(E) is freely generated by H̃ ∈ |OP(E)(1)|
and a ruling subspace F̃ of the bundle map j : P(E)→ P1. Moreover, if
a1 > 0 then the morphism ϕ : P(E)→ S(a1, a2) induces an isomorphism
between the divisor class groups and hence the divisor class group of
S(a1, a2) is freely generated by the hyperplane divisor H and a ruling
line F of X.

Notation and Remark 2.1. (1) Let S(1, 1) ⊂ P3 be the rational normal sur-
face scroll of degree 2. Let S = k[X0, X1, X2, X3] be the homogeneous coordi-
nate ring of P3. Then S(1, 1) is defined by the quadratic equation X0X3−X1X2.
(2) Let C ⊂ P3 be a rational normal curve of degree 3. Then C can be defined
by the parameterization

C = {[s3(P ) : s2t(P ) : st2(P ) : t3(P )] | P ∈ P1}
and the ideal IC of C is generated by the following three quadratic equations:

{X0X2 −X2
1 , X1X3 −X2

2 , X0X3 −X1X2}.
Thus C is contained the rational normal surface scroll S(1, 1). Furthermore,
C is linear equivalent to a divisor H + F where H and F are respectively a
hyperplane section and a ruling line of S(1, 1) (For details, see [24, Theorem
5.10]).
(3) For a smooth curve Z ⊂ Pr and an integer s ≥ 2, we defined the closure Zs,
say the s-th join of Z with itself, of the set of points lying in (s−1)-dimensional
linear subspaces spanned by general collections of s points in Z. Then there is
a strictly ascending filtration

Z $ Z2 $ Z3 $ · · · $ Zord(Z)−1 $ Zord(Z) = Pr

where the number ord(Z) = min{s | Zs = Pr} is called the order of Z. Then it
is well known that the linear projection map πq : Z → Pr−1 of Z from a point
q ∈ Pr \ Z2 is an isomorphism. For details, we refer to the reader to [29].
(4) Let Z ⊂ Pr be a nondegenerate irreducible projective curve of degree d. Z
is said to be m-regular if its sheaf of ideal IZ satisfies the vanishing

Hi(Pr, IZ(m− i)) = 0 for all i ≥ 1.

The Castelnuovo-Mumford regularity (or simply the regularity) of Z, denoted
by reg(Z), is defined as the least integer m such that Z is m-regular(cf. [23]).
Another interest of this notion stems partly from the fact that Z is m-regular if
and only if for every j ≥ 0 the minimal generators of the j-th syzygy module of
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the homogeneous ideal I(Z) of Z occur in degree ≤ m+ j ([10]). In particular,
I(Z) is generated by forms of degree ≤ m. Thus the existence of `-secant
line guarantees that reg(Z) ≥ `. By a well-known result of Gruson-Lazarsfeld-
Peskine [14], the Castelnuovo-Mumford regularity reg(Z) of Z is bounded by
reg(Z) ≤ d− r+ 2. They further classified the extremal curves which fail to be
(d− r + 1)-regular, showing in particular that if d ≥ r + 2 then Z is a smooth
rational curve with a unique (d− r + 2)-secant line.

2.2. Minimal set of generators of an ideal

Let Z ⊂ Pr be a nondegenerate projective irreducible curve and let IZ be
the homogeneous ideal of Z in R. Then we can choose the minimal set of
homogeneous generators for IZ as IZ is finitely generated. For the convenience
of the reader, we revisit the notion of minimal set of generators of an ideal IZ .
Let

M = {Gi,j ∈ K[X0, X1, . . . , Xr] | Gi,j ∈ IZ for 2 ≤ i ≤ m and 1 ≤ j ≤ `i}

be the set of homogeneous polynomials of degree deg(Gi,j) = i. Let (IZ)≤t be
the ideal generated by the homogeneous polynomials in IZ of degree at most t.
Then M is the minimal set of generators of IZ if and only if the following three
conditions hold:

(i) IZ is generated by the polynomials in M (i.e., IZ = 〈M〉).

(ii) Gi,1, Gi,2, . . . , Gi,`i are K-linearly independent forms of degree i for each
2 ≤ i ≤ m.

(iii) Gi,j /∈ (IZ)≤i−1 for each 2 ≤ i ≤ m.

3. Proof of Main Theorem

This section is devoted to prove Theorem 1.1. We keep the notations in
the previous section. Let Cd ⊂ P3 (d ≥ 3) be a rational curve defined as the
parametrization

Cd = {[sd(P ) : sd−1t(P ) : std−1(P ) : td(P )] | P ∈ P1}. (2)

Lemma 3.1. Let Cd be a curve just stated as above. Then Cd is smooth and
of degree d.

Proof. The case where d = 3 follows from Notation and Remark 2.1.(2). Sup-
pose that d > 3. Then we can see that the parametrization (2) comes from the
embedding νd : P1 → Pd by

P ↪→ [sd(P ) : sd−1t(P ) : · · · : std−1(P ) : td(P )] for P ∈ P1

of a projective line P1. More precisely, we denote C̃d the image of P1 by the
map νd and let L be a (d − 4)-dimensional linear subspace of Pd spanned by
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(d− 3) standard coordinate points

{[0, 0, 1, 0, . . . , 0, 0], [0, 0, 0, 1, 0, . . . , 0, 0], . . . , [0, 0, · · · , 0, 1, 0, 0]}.

Then Cd is obtained by the linear projection map πL : C̃d → P3 of C̃d from
L. Since L ⊂ Pr \ C2

d , the map πL is an isomorphism by Notation and Remark
2.1.(3). Thus Cd is a smooth rational curve of degree d. �

Proposition 3.2. Let Cd be as in Lemma 3.1. Then we have

(1) The curve Cd is contained in the rational normal surface scroll S(1, 1)
as a divisor linear equivalent to H + (d − 2)F where H and F are re-
spectively the hyperplane section and a ruling line.

(2) The curve Cd is of maximal regularity d− 1.

Proof. (1) Consider the parametrization (2) of Cd. Then it is easy to see that
the defining ideal ICd

of Cd contains the quadratic equation X0X3−X1X2 and
hence Cd is a divisor of S := S(1, 1) by Notation and Remark 2.1.(1). Now
assume that Cd is a divisor of S in the class aH + bF for some a ≥ 1. To show
that a = 1, suppose that a ≥ 2. First note that the curve Cd is not linearly
normal as it is an image of an isomorphic projection of a rational normal curve
of degree d by Lemma 3.1. Consider the exact sequence

0→ IS → ICd
→ OS(−aH − bF )→ 0.

Then since S is arithmetically Cohen-Macaulay, we have the exact sequence

0→ H1(Pr, ICd
(1))→ H1(S,OS((1− a)H − bF ))→ · · · .

Then one can see that H1(S,OS((1 − a)H − bF )) = 0 for a ≥ 2 and hence Cd

is linearly normal. This is a contradiction. Now it can be shown that b = d− 2
by degree counting of the divisor H + bF .
(2) It suffices to show that the line section S(1) of S is a (d− 1)-secant line to
Cd because the regularity of Cd is bounded by d− 1 (see Notation and Remark
2.1.(4)). Indeed since Cd

∼= H + (d − 2)F and S(1) ∼= H − F , it is easy to see
that the intersection number ](Cd ∩ S(1)) = d− 1 (cf. See [20, Lemma 2.1]).

�

Example 3.3. For d = 4, 5, 6, 7, 8, 9, 10, let Cd ⊂ P3 be curves defined as the
parametrization (2). For the simplicity, put

Fd,i = Xd−i−1
0 Xi

2 −Xd−i
1 Xi−1

3

for 4 ≤ d ≤ 10 and 1 ≤ i ≤ d−1. Then by means of the Computer Algebra Sys-
tem Singular [8], the defining ideal ICd

for d = 4, 5, 6, 7, 8, 9, 10 are respectively
minimally generated as followings:

(i) IC4
= 〈X0X3 −X1X2, F4,1, F4,2, F4,3〉,

(ii) IC5 = 〈X0X3 −X1X2, F5,1, F5,2, F5,3, F5,4〉
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(iii) IC6 = 〈X0X3 −X1X2, F6,1, F6,2, F6,3, F6,4, F6,5〉

(iv) IC7
= 〈X0X3 −X1X2, F7,1, F7,2, F7,3, F7,4, F7,5, F7,6〉

(v) IC8 = 〈X0X3 −X1X2, F8,1, F8,2, F8,3, F8,4, F8,5, F8,6, F8,7〉

(vi) IC9
= 〈X0X3 −X1X2, F9,1, F9,2, F9,3, F9,4, F9,5, F9,6, F9,7, F9,8〉

(vii) IC10
= 〈X0X3−X1X2, F10,1, F10,2, F10,3, F10,4, F10,5, F10,6, F10,7, F10,8, F10,9〉.

These examples and the observations about the pattern of the minimal gen-
erators of defining ideals ICd

enable us to pose the following proposition.

Proposition 3.4. Let Cd be as in Lemma 3.1. Then the defining ideal ICd
of

Cd is minimally generated as following:

ICd
= 〈X0X3 −X1X2, Fd,1, Fd,2, . . . , Fd,d−1〉

where Fd,i = Xd−i−1
0 Xi

2 −Xd−i
1 Xi−1

3 for 1 ≤ i ≤ d− 1.

Proof. If d = 3, then Cd is a rational normal curve (see Notation and Remark
2.1.(2)). So we may assume that d ≥ 4. PutMd = {X0X3−X1X2, Fd,1, Fd,2, . . . , Fd,d−1}.
Then since Cd ⊂ S(1, 1) by Proposition 3.2.(1), we can see that X0X3−X1X2 ∈
ICd

. Also it can be shown that Fd,i([s
d : sd−1t : std−1 : td]) = 0 for all

1 ≤ i ≤ d− 1 as the parametrization (2). This shows that Md ⊂ ICd
. Now we

will show that ICd
= 〈Md〉 by verifying the three conditions (ii), (iii) and (i) in

subsection 2.2 hold for the set Md in tern. For the condition (ii), it suffices to
show that {Fd,i} are K-linearly independent polynomials of degree d − 1. To
do this, consider the degree of X0 in each Fd,i for 1 ≤ i ≤ d− 1. Then one can
see that Fd,i for each i can not be written by a linear combination of the other
F ′d,js. For the condition (iii), suppose that Fd,i ∈ (ICd

)≤d−2 for some Fd,i ∈M
and consider the following short exact sequence

0→ IS → ICd
→ OS(−H − (d− 2)F )→ 0

comes from the inclusion Cd ⊂ S. First we have

H0(P3,OS((j − 1)H − (d− 2)F )) = H0(P3, symj−1(OP1(1)⊕OP1(1))⊗OP1(−d+ 2))

= H0(P3,OP1(j − d+ 1))

= 0 for j ≤ d− 2.

This yields that

H0(P3, IS(j)) = H0(P3, ICd
(j)) = (ICd

)≤j = 〈X0X3−X1X2〉 for 2 ≤ j ≤ d− 2.
(3)

So Fd,i can be represented as following:

Fd,i = Xd−i−1
0 Xi

2 −Xd−i
1 Xi−1

3 = (X0X3 −X1X2)G (4)
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where G ∈ K[X0, X1, X2, X3] is a homogeneous polynomial of degree d − 3.
Then for any point [X0, X1, X2, 0] ∈ P3 the equality (4) above should hold.
However, it is impossible that

Fd,i([X0, X1, X2, 0]) = Xd−i−1
0 Xi

2 = −X1X2 G([X0, X1, X2, 0]).

For the condition (i), we denote (ICd
)d−1 the degree (d − 1)-piece of the ideal

ICd
. Since reg(Cd) = d − 1 and (ICd

)≤d−2 = 〈X0X3 − X1X2〉 by (3), we get
the equivalence condition that ICd

is generated by the set Md if and only if the
homogeneous polynomials in H0(P3,OP3(d − 3)) × (X0X3 − X1X2) and F ′d,is

consist the degree (d−1)-piece (ICd
)d−1 of the ideal ICd

. So we finish the proof
by showing dimK(ICd

)d−1 = h0(P3,OP3(d − 3)) + d − 1. To see this, consider
the short exact sequence

0→ ICd
→ OP3 → OCd

→ 0

Then since Cd is (d− 1)-normal by the regularity of Cd, we have

h0(P3, ICd
(d− 1)) = h0(P3,OP3(d− 1))− h0(P3,OCd

(d− 1))

= h0(P3,OP3(d− 1))− h0(P1,OP1(d(d− 1)))

=
d3 − 3d2 + 8d− 6

6
.

On the other hand, we see that h0(P3,OP3(d− 3)) + d− 1 = d3−3d2+8d−6
6 .

�

Proof of Theorem 1.1. This follows from Lemma 3.1, Proposition 3.2 and
Proposition 3.4.
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