East Asian Math. J.
Vol. 34 (2018), No. 1, pp. 021-028
YNMS
http://dx.doi.org/10.7858/eamj.2018.003

DEFINING EQUATIONS OF RATIONAL CURVES IN SMOOTH QUADRIC SURFACE

Wanseok LEE and Shuailing Yang

Abstract

For a nondegenerate irreducible projective variety, it is a classical problem to study the defining equations of a variety with respect to the given embedding. In this paper we precisely determine the defining equations of certain types of rational curves in \mathbb{P}^{3}.

1. Introduction

We work over an algebraically closed field \mathbb{k} of arbitrary characteristic. Let \mathbb{P}^{r} and $R=\mathbb{k}\left[X_{0}, X_{1}, \ldots, X_{r}\right]$ denote respectively the projective r-space over \mathbb{k} and the homogeneous coordinate ring of \mathbb{P}^{r}. Let $Z \subset \mathbb{P}^{r}$ be a nondegenerate irreducible variety and let I_{Z} be the homogeneous ideal of Z in R. To understand the variety Z, it is natural to study the defining equations of Z and the syzygies among them. Also the classical problem to find an upper bound of the maximal degree of a minimal generator of I_{Z} has been reformulated as describing the minimal free resolution of I_{Z}. About these problems, there were several results [7], [9], [11], [12], [13], [14], [15], [17], [23], [27] and so on. Nevertheless, it is still the most fundamental but difficult problem to determine the defining equations of Z precisely, namely the minimal generators of I_{Z}.

In this paper, we would like to focus our interest on the problem to describe the equations defining the rational curves. Let $T:=\mathbb{k}[s, t]$ be the homogeneous coordinate ring of \mathbb{P}^{1}. For each $k \geq 1$, we denote by T_{k} the k-th graded component of T. Let $C \subset \mathbb{P}^{r}$ be a nondegenerate smooth rational curve of degree $d \geq r$. As is well known, there exists a subset $\left\{f_{0}, f_{1}, \ldots, f_{r}\right\} \subset T_{d}$ of \mathbb{k}-linearly independent forms of degree d such that the curve C is given by a parametrization

$$
C=\left\{\left[f_{0}(P): f_{1}(P): \cdots: f_{r}(P)\right] \mid P \in \mathbb{P}^{1}\right\} .
$$

[^0]As the most simplest case, the rational normal curve $C \subset \mathbb{P}^{r}$ of degree d is a smooth rational curve with the condition $r=d$. Then it can be defined to be a image of the map $\nu_{d}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d}$ parameterized by

$$
\begin{equation*}
C=\left\{\left[s^{d}(P): s^{d-1} t(P): \cdots: s t^{d-1}(P): t^{d}(P)\right] \mid P \in \mathbb{P}^{1}\right\} \tag{1}
\end{equation*}
$$

The almost all algebraic and geometric properties of C are very well understood. Also it is well-known that C is defined by the common zero locus of the polynomials $F_{i, j}=X_{i} X_{j}-X_{i-1} X_{j-1}$ for $1 \leq i \leq j \leq r-1$. For the next case where $d=r+1$, there are several results about algebraic and geometric properties of $C([1],[2],[3],[4],[5],[6],[16],[18],[19],[21],[22],[24],[25],[26],[26]$ and so on). However about the problem to describe the defining equations of C, almost nothing is known in general for the author's knowledge. In this short note, as a beginning of this problem we study the rational curve $C_{d} \subset \mathbb{P}^{3}$ parameterized as

$$
C_{d}=\left\{\left[s^{d}(P): s^{d-1} t(P): s t^{d-1}(P): t^{d}(P)\right] \mid P \in \mathbb{P}^{1}\right\}
$$

This parametrization of C_{d} is a kind of generalization of the rational normal curve $C \subset \mathbb{P}^{3}$ of degree 3 in (1). Then the curve C_{d} is a smooth rational curve of degree d contained in a smooth rational rational normal surface scroll $S(1,1)$ (see Lemma 3.1 and Proposition 3.2). These investigations enable us to determine the precise shapes of the minimal generators of the homogenous ideal $I_{C_{d}}$ of C_{d}. The following is the our main result.

Theorem 1.1. Let $C_{d} \subset \mathbb{P}^{3}$ be a rational curve defined as the parametrization

$$
C_{d}=\left\{\left[s^{d}(P): s^{d-1} t(P): s t^{d-1}(P): t^{d}(P)\right] \mid P \in \mathbb{P}^{1}\right\}
$$

where $d \geq 3$. Then
(1) The curve C_{d} is a smooth rational curve of degree d contained in the rational normal surface scroll $S(1,1)$ as a divisor linear equivalent to $H+(d-2) F$ where H and F are respectively the hyperplane section and a ruling line.
(2) C_{d} is of maximal regularity $d-1$ in the sense of Castelnuovo-Mumford.
(3) The defining ideal $I_{C_{d}}$ of C_{d} is minimally generated as following:

$$
\begin{gathered}
I_{C_{d}}=\left\langle X_{0} X_{3}-X_{1} X_{2}, F_{d, 1}, F_{d, 2}, \ldots, F_{d, d-1}\right\rangle \\
\text { where } F_{d, i}=X_{0}^{d-i-1} X_{2}^{i}-X_{1}^{d-i} X_{3}^{i-1} \text { for } 1 \leq i \leq d-1
\end{gathered}
$$

2. Preliminaries

2.1. Rational normal surface scrolls and its divisors

We begin with recalling a standard description of rational normal surface scrolls (cf. [28]). For the vector bundle

$$
\mathcal{E}=\mathcal{O}_{\mathbb{P}^{1}}\left(a_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(a_{2}\right)
$$

on \mathbb{P}^{1} where $0 \leq a_{1} \leq a_{2}$ and $a_{2}>0$, the tautological line bundle $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ of $\mathbb{P}(\mathcal{E})$ is globally generated and we write $S\left(a_{1}, a_{2}\right)$ for the image of the map defined by $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$.
(A) It is well-known that $S\left(a_{1}, a_{2}\right)$ is a normal variety and has only rational singularities. Also the homogeneous ideal of $S\left(a_{1}, a_{2}\right)$ is generated by quadratic equations.
(B) The divisor class group of $\mathbb{P}(\mathcal{E})$ is freely generated by $\widetilde{H} \in\left|\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)\right|$ and a ruling subspace \widetilde{F} of the bundle map $j: \mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}^{1}$. Moreover, if $a_{1}>0$ then the morphism $\varphi: \mathbb{P}(\mathcal{E}) \rightarrow S\left(a_{1}, a_{2}\right)$ induces an isomorphism between the divisor class groups and hence the divisor class group of $S\left(a_{1}, a_{2}\right)$ is freely generated by the hyperplane divisor H and a ruling line F of X.

Notation and Remark 2.1. (1) Let $S(1,1) \subset \mathbb{P}^{3}$ be the rational normal surface scroll of degree 2 . Let $S=\mathbb{k}\left[X_{0}, X_{1}, X_{2}, X_{3}\right]$ be the homogeneous coordinate ring of \mathbb{P}^{3}. Then $S(1,1)$ is defined by the quadratic equation $X_{0} X_{3}-X_{1} X_{2}$. (2) Let $C \subset \mathbb{P}^{3}$ be a rational normal curve of degree 3 . Then C can be defined by the parameterization

$$
C=\left\{\left[s^{3}(P): s^{2} t(P): s t^{2}(P): t^{3}(P)\right] \mid P \in \mathbb{P}^{1}\right\}
$$

and the ideal I_{C} of C is generated by the following three quadratic equations:

$$
\left\{X_{0} X_{2}-X_{1}^{2}, \quad X_{1} X_{3}-X_{2}^{2}, \quad X_{0} X_{3}-X_{1} X_{2}\right\} .
$$

Thus C is contained the rational normal surface scroll $S(1,1)$. Furthermore, C is linear equivalent to a divisor $H+F$ where H and F are respectively a hyperplane section and a ruling line of $S(1,1)$ (For details, see [24, Theorem 5.10]).
(3) For a smooth curve $Z \subset \mathbb{P}^{r}$ and an integer $s \geq 2$, we defined the closure Z^{s}, say the s-th join of Z with itself, of the set of points lying in $(s-1)$-dimensional linear subspaces spanned by general collections of s points in Z. Then there is a strictly ascending filtration

$$
Z \varsubsetneqq Z^{2} \varsubsetneqq Z^{3} \varsubsetneqq \cdots \varsubsetneqq Z^{\operatorname{ord}(\mathrm{Z})-1} \varsubsetneqq Z^{\operatorname{ord}(\mathrm{Z})}=\mathbb{P}^{r}
$$

where the number $\operatorname{ord}(Z)=\min \left\{s \mid Z^{s}=\mathbb{P}^{r}\right\}$ is called the order of Z. Then it is well known that the linear projection map $\pi_{q}: Z \rightarrow \mathbb{P}^{r-1}$ of Z from a point $q \in \mathbb{P}^{r} \backslash Z^{2}$ is an isomorphism. For details, we refer to the reader to [29].
(4) Let $Z \subset \mathbb{P}^{r}$ be a nondegenerate irreducible projective curve of degree d. Z is said to be m-regular if its sheaf of ideal \mathcal{I}_{Z} satisfies the vanishing

$$
H^{i}\left(\mathbb{P}^{r}, \mathcal{I}_{Z}(m-i)\right)=0 \quad \text { for all } i \geq 1 .
$$

The Castelnuovo-Mumford regularity (or simply the regularity) of Z, denoted by $\operatorname{reg}(Z)$, is defined as the least integer m such that Z is m-regular(cf. [23]). Another interest of this notion stems partly from the fact that Z is m-regular if and only if for every $j \geq 0$ the minimal generators of the j-th syzygy module of
the homogeneous ideal $I(Z)$ of Z occur in degree $\leq m+j$ ([10]). In particular, $I(Z)$ is generated by forms of degree $\leq m$. Thus the existence of ℓ-secant line guarantees that $\operatorname{reg}(Z) \geq \ell$. By a well-known result of Gruson-LazarsfeldPeskine [14], the Castelnuovo-Mumford regularity $\operatorname{reg}(Z)$ of Z is bounded by $\operatorname{reg}(Z) \leq d-r+2$. They further classified the extremal curves which fail to be $(d-r+1)$-regular, showing in particular that if $d \geq r+2$ then Z is a smooth rational curve with a unique $(d-r+2)$-secant line.

2.2. Minimal set of generators of an ideal

Let $Z \subset \mathbb{P}^{r}$ be a nondegenerate projective irreducible curve and let I_{Z} be the homogeneous ideal of Z in R. Then we can choose the minimal set of homogeneous generators for I_{Z} as I_{Z} is finitely generated. For the convenience of the reader, we revisit the notion of minimal set of generators of an ideal I_{Z}. Let
$M=\left\{G_{i, j} \in K\left[X_{0}, X_{1}, \ldots, X_{r}\right] \quad \mid \quad G_{i, j} \in I_{Z} \quad\right.$ for $2 \leq i \leq m$ and $\left.1 \leq j \leq \ell_{i}\right\}$
be the set of homogeneous polynomials of degree $\operatorname{deg}\left(G_{i, j}\right)=i$. Let $\left(I_{Z}\right)_{\leq t}$ be the ideal generated by the homogeneous polynomials in I_{Z} of degree at most t. Then M is the minimal set of generators of I_{Z} if and only if the following three conditions hold:
(i) I_{Z} is generated by the polynomials in M (i.e., $I_{Z}=\langle M\rangle$).
(ii) $G_{i, 1}, G_{i, 2}, \ldots, G_{i, \ell_{i}}$ are \mathbb{K}-linearly independent forms of degree i for each $2 \leq i \leq m$.
(iii) $G_{i, j} \notin\left(I_{Z}\right)_{\leq i-1}$ for each $2 \leq i \leq m$.

3. Proof of Main Theorem

This section is devoted to prove Theorem 1.1. We keep the notations in the previous section. Let $C_{d} \subset \mathbb{P}^{3}(d \geq 3)$ be a rational curve defined as the parametrization

$$
\begin{equation*}
C_{d}=\left\{\left[s^{d}(P): s^{d-1} t(P): s t^{d-1}(P): t^{d}(P)\right] \mid P \in \mathbb{P}^{1}\right\} \tag{2}
\end{equation*}
$$

Lemma 3.1. Let C_{d} be a curve just stated as above. Then C_{d} is smooth and of degree d.

Proof. The case where $d=3$ follows from Notation and Remark 2.1.(2). Suppose that $d>3$. Then we can see that the parametrization (2) comes from the embedding $\nu_{d}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d}$ by

$$
P \hookrightarrow\left[s^{d}(P): s^{d-1} t(P): \cdots: s t^{d-1}(P): t^{d}(P)\right] \quad \text { for } \quad P \in \mathbb{P}^{1}
$$

of a projective line \mathbb{P}^{1}. More precisely, we denote \widetilde{C}_{d} the image of \mathbb{P}^{1} by the map ν_{d} and let \mathbb{L} be a $(d-4)$-dimensional linear subspace of \mathbb{P}^{d} spanned by
$(d-3)$ standard coordinate points

$$
\{[0,0,1,0, \ldots, 0,0],[0,0,0,1,0, \ldots, 0,0], \ldots,[0,0, \cdots, 0,1,0,0]\} .
$$

Then C_{d} is obtained by the linear projection map $\pi_{\mathbb{L}}: \widetilde{C}_{d} \rightarrow \mathbb{P}^{3}$ of \widetilde{C}_{d} from \mathbb{L}. Since $\mathbb{L} \subset \mathbb{P}^{r} \backslash C_{d}^{2}$, the map $\pi_{\mathbb{L}}$ is an isomorphism by Notation and Remark 2.1.(3). Thus C_{d} is a smooth rational curve of degree d.

Proposition 3.2. Let C_{d} be as in Lemma 3.1. Then we have
(1) The curve C_{d} is contained in the rational normal surface scroll $S(1,1)$ as a divisor linear equivalent to $H+(d-2) F$ where H and F are respectively the hyperplane section and a ruling line.
(2) The curve C_{d} is of maximal regularity $d-1$.

Proof. (1) Consider the parametrization (2) of C_{d}. Then it is easy to see that the defining ideal $I_{C_{d}}$ of C_{d} contains the quadratic equation $X_{0} X_{3}-X_{1} X_{2}$ and hence C_{d} is a divisor of $S:=S(1,1)$ by Notation and Remark 2.1.(1). Now assume that C_{d} is a divisor of S in the class $a H+b F$ for some $a \geq 1$. To show that $a=1$, suppose that $a \geq 2$. First note that the curve C_{d} is not linearly normal as it is an image of an isomorphic projection of a rational normal curve of degree d by Lemma 3.1. Consider the exact sequence

$$
0 \rightarrow \mathcal{I}_{S} \rightarrow \mathcal{I}_{C_{d}} \rightarrow \mathcal{O}_{S}(-a H-b F) \rightarrow 0
$$

Then since S is arithmetically Cohen-Macaulay, we have the exact sequence

$$
0 \rightarrow H^{1}\left(\mathbb{P}^{r}, \mathcal{I}_{C_{d}}(1)\right) \rightarrow H^{1}\left(S, \mathcal{O}_{S}((1-a) H-b F)\right) \rightarrow \cdots .
$$

Then one can see that $H^{1}\left(S, \mathcal{O}_{S}((1-a) H-b F)\right)=0$ for $a \geq 2$ and hence C_{d} is linearly normal. This is a contradiction. Now it can be shown that $b=d-2$ by degree counting of the divisor $H+b F$.
(2) It suffices to show that the line section $S(1)$ of S is a ($d-1$)-secant line to C_{d} because the regularity of C_{d} is bounded by $d-1$ (see Notation and Remark 2.1.(4)). Indeed since $C_{d} \cong H+(d-2) F$ and $S(1) \cong H-F$, it is easy to see that the intersection number $\sharp\left(C_{d} \cap S(1)\right)=d-1$ (cf. See [20, Lemma 2.1]).

Example 3.3. For $d=4,5,6,7,8,9,10$, let $C_{d} \subset \mathbb{P}^{3}$ be curves defined as the parametrization (2). For the simplicity, put

$$
F_{d, i}=X_{0}^{d-i-1} X_{2}^{i}-X_{1}^{d-i} X_{3}^{i-1}
$$

for $4 \leq d \leq 10$ and $1 \leq i \leq d-1$. Then by means of the Computer Algebra System Singular [8], the defining ideal $I_{C_{d}}$ for $d=4,5,6,7,8,9,10$ are respectively minimally generated as followings:
(i) $I_{C_{4}}=\left\langle X_{0} X_{3}-X_{1} X_{2}, F_{4,1}, F_{4,2}, F_{4,3}\right\rangle$,
(ii) $I_{C_{5}}=\left\langle X_{0} X_{3}-X_{1} X_{2}, F_{5,1}, F_{5,2}, F_{5,3}, F_{5,4}\right\rangle$
(iii) $I_{C_{6}}=\left\langle X_{0} X_{3}-X_{1} X_{2}, F_{6,1}, F_{6,2}, F_{6,3}, F_{6,4}, F_{6,5}\right\rangle$
(iv) $I_{C_{7}}=\left\langle X_{0} X_{3}-X_{1} X_{2}, F_{7,1}, F_{7,2}, F_{7,3}, F_{7,4}, F_{7,5}, F_{7,6}\right\rangle$
(v) $I_{C_{8}}=\left\langle X_{0} X_{3}-X_{1} X_{2}, F_{8,1}, F_{8,2}, F_{8,3}, F_{8,4}, F_{8,5}, F_{8,6}, F_{8,7}\right\rangle$
(vi) $I_{C_{9}}=\left\langle X_{0} X_{3}-X_{1} X_{2}, F_{9,1}, F_{9,2}, F_{9,3}, F_{9,4}, F_{9,5}, F_{9,6}, F_{9,7}, F_{9,8}\right\rangle$
(vii) $I_{C_{10}}=\left\langle X_{0} X_{3}-X_{1} X_{2}, F_{10,1}, F_{10,2}, F_{10,3}, F_{10,4}, F_{10,5}, F_{10,6}, F_{10,7}, F_{10,8}, F_{10,9}\right\rangle$.

These examples and the observations about the pattern of the minimal generators of defining ideals $I_{C_{d}}$ enable us to pose the following proposition.
Proposition 3.4. Let C_{d} be as in Lemma 3.1. Then the defining ideal $I_{C_{d}}$ of C_{d} is minimally generated as following:

$$
I_{C_{d}}=\left\langle X_{0} X_{3}-X_{1} X_{2}, F_{d, 1}, F_{d, 2}, \ldots, F_{d, d-1}\right\rangle
$$

where $F_{d, i}=X_{0}^{d-i-1} X_{2}^{i}-X_{1}^{d-i} X_{3}^{i-1}$ for $1 \leq i \leq d-1$.
Proof. If $d=3$, then C_{d} is a rational normal curve (see Notation and Remark 2.1.(2)). So we may assume that $d \geq 4$. Put $M_{d}=\left\{X_{0} X_{3}-X_{1} X_{2}, F_{d, 1}, F_{d, 2}, \ldots, F_{d, d-1}\right\}$. Then since $C_{d} \subset S(1,1)$ by Proposition 3.2.(1), we can see that $X_{0} X_{3}-X_{1} X_{2} \in$ $I_{C_{d}}$. Also it can be shown that $F_{d, i}\left(\left[s^{d}: s^{d-1} t: s t^{d-1}: t^{d}\right]\right)=0$ for all $1 \leq i \leq d-1$ as the parametrization (2). This shows that $M_{d} \subset I_{C_{d}}$. Now we will show that $I_{C_{d}}=\left\langle M_{d}\right\rangle$ by verifying the three conditions (ii), (iii) and (i) in subsection 2.2 hold for the set M_{d} in tern. For the condition (ii), it suffices to show that $\left\{F_{d, i}\right\}$ are \mathbb{K}-linearly independent polynomials of degree $d-1$. To do this, consider the degree of X_{0} in each $F_{d, i}$ for $1 \leq i \leq d-1$. Then one can see that $F_{d, i}$ for each i can not be written by a linear combination of the other $F_{d, j}^{\prime} s$. For the condition (iii), suppose that $F_{d, i} \in\left(I_{C_{d}}\right)_{\leq d-2}$ for some $F_{d, i} \in M$ and consider the following short exact sequence

$$
0 \rightarrow \mathcal{I}_{S} \rightarrow \mathcal{I}_{C_{d}} \rightarrow \mathcal{O}_{S}(-H-(d-2) F) \rightarrow 0
$$

comes from the inclusion $C_{d} \subset S$. First we have

$$
\begin{aligned}
H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{S}((j-1) H-(d-2) F)\right) & =H^{0}\left(\mathbb{P}^{3}, \operatorname{sym}^{j-1}\left(\mathcal{O}_{\mathbb{P}^{1}}(1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)\right) \otimes \mathcal{O}_{\mathbb{P}^{1}}(-d+2)\right) \\
& =H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{1}}(j-d+1)\right) \\
& =0 \quad \text { for } j \leq d-2
\end{aligned}
$$

This yields that
$H^{0}\left(\mathbb{P}^{3}, \mathcal{I}_{S}(j)\right)=H^{0}\left(\mathbb{P}^{3}, \mathcal{I}_{C_{d}}(j)\right)=\left(I_{C_{d}}\right)_{\leq j}=\left\langle X_{0} X_{3}-X_{1} X_{2}\right\rangle \quad$ for $2 \leq j \leq d-2$.
So $F_{d, i}$ can be represented as following:

$$
F_{d, i}=X_{0}^{d-i-1} X_{2}^{i}-X_{1}^{d-i} X_{3}^{i-1}=\left(X_{0} X_{3}-X_{1} X_{2}\right) G
$$

where $G \in \mathbb{K}\left[X_{0}, X_{1}, X_{2}, X_{3}\right]$ is a homogeneous polynomial of degree $d-3$. Then for any point $\left[X_{0}, X_{1}, X_{2}, 0\right] \in \mathbb{P}^{3}$ the equality (4) above should hold. However, it is impossible that

$$
F_{d, i}\left(\left[X_{0}, X_{1}, X_{2}, 0\right]\right)=X_{0}^{d-i-1} X_{2}^{i}=-X_{1} X_{2} G\left(\left[X_{0}, X_{1}, X_{2}, 0\right]\right)
$$

For the condition (i), we denote $\left(I_{C_{d}}\right)_{d-1}$ the degree $(d-1)$-piece of the ideal $I_{C_{d}}$. Since $\operatorname{reg}\left(C_{d}\right)=d-1$ and $\left(I_{C_{d}}\right)_{\leq d-2}=\left\langle X_{0} X_{3}-X_{1} X_{2}\right\rangle$ by (3), we get the equivalence condition that $I_{C_{d}}$ is generated by the set M_{d} if and only if the homogeneous polynomials in $H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(d-3)\right) \times\left(X_{0} X_{3}-X_{1} X_{2}\right)$ and $F_{d, i}^{\prime} s$ consist the degree $(d-1)$-piece $\left(I_{C_{d}}\right)_{d-1}$ of the ideal $I_{C_{d}}$. So we finish the proof by showing $\operatorname{dim}_{\mathbb{K}}\left(I_{C_{d}}\right)_{d-1}=h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(d-3)\right)+d-1$. To see this, consider the short exact sequence

$$
0 \rightarrow \mathcal{I}_{C_{d}} \rightarrow \mathcal{O}_{\mathbb{P}^{3}} \rightarrow \mathcal{O}_{C_{d}} \rightarrow 0
$$

Then since C_{d} is $(d-1)$-normal by the regularity of C_{d}, we have

$$
\begin{aligned}
h^{0}\left(\mathbb{P}^{3}, \mathcal{I}_{C_{d}}(d-1)\right) & =h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(d-1)\right)-h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{C_{d}}(d-1)\right) \\
& =h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(d-1)\right)-h^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(d(d-1))\right) \\
& =\frac{d^{3}-3 d^{2}+8 d-6}{6} .
\end{aligned}
$$

On the other hand, we see that $h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(d-3)\right)+d-1=\frac{d^{3}-3 d^{2}+8 d-6}{6}$.

Proof of Theorem 1.1. This follows from Lemma 3.1, Proposition 3.2 and Proposition 3.4.

References

[1] M. Brodmann and E. Park, On varieties of almost minimal degree I: Secant loci of rational normal scrolls. J. Pure Appl. Algebra 214 (2010), 2033-2043
[2] M. Brodmann and E. Park, On varieties of almost minimal degree III: Tangent spaces and embedding scrolls. J. Pure Appl. Algebra 215 (2011), no. 12, 2859-2872
[3] M. Brodmann, E. Park and P. Schenzel, On varieties of almost minimal degree II: A rank-depth formula. Proc. Amer. Math. Soc. 139 (2011), no. 6, 2025-2032
[4] M. Brodmann and P. Schenzel, Curves of Degree r+2 in \mathbb{P}^{r} :Cohomological, Geometric, and Homological Aspects. J. Algebra 242 (2001), 577-623
[5] M. Brodmann and P. Schenzel, On varieties of almost minimal degree in small codimension. J. Algebra 305 (2006), no.2, 789-801.
[6] M. Brodmann and P. Schenzel, Arithmetic properties of projective varieties of almost minimal degree. J. Algebraic Geometry 16 (2007), 347-400.
[7] G. Castelnuovo, Sui multipli di une serie lineare di gruppi di punti appartenente ad une curva algebraic. Rend. Circ. Mat. Palermo (2) 7 (1893), 89-110.
[8] M. Decker, G.M. Greuel and H. Schönemann, Singular 3-1-2-A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2011).
[9] D. Eisenbud, M. Green, K. Hulek and S. Popescu, Restriction linear syzygies: algebra and geometry, Compositio Math. 141 (2005), 1460-1478.
[10] D. Eisenbud and S. Gôto, Linear free resolutions and minimal multiplicity. Journal of Algebra 88 (1984) 89-133.
[11] La. Ein and R. Lazarsfeld, Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension. Invention. Math. 111 (1993), 51-67.
[12] T. Fujita, Defining equations for certain types of polarized varieties. in: Complex Analysis and Algebraic Geometry, Cambridge University Press, Cambridge (1977), 165-173.
[13] M. Green and R. Lazarsfeld, Some results on the syzygies of finite sets and algebraic curves. Compos. Math. 67 (1988), 301-314.
[14] L. Gruson, R. Lazarsfeld and C. Peskine, On a theorem of Castelnovo, and the equations defining space curves. Inventiones mathematicae 72 (1983), 491-506.
[15] J. Harris (with the collaboration of D. Eisenbud), Curves in Projective Space. Les Presses de l'Universitê de Montrêal, Montrêal, 1982.
[16] L.T. Hoa, On minimal free resolutions of projective varieties of degree $=$ codimension+2. J. Pure Appl. Algebra 87 (1993), 241-250.
[17] S. L'vovsky, On inflection points, monomial curves, and hypersurfaces containing projective curves. Math. Ann. 306 (1996), 719-735.
[18] W. Lee and E. Park, On non-normal del Pezzo varieties. J. Algebra 387 (2013), 11-28
[19] W. Lee and E. Park, Projective curves of degree=codimension+2 II. Internat. J. Algebra Comput. 26 (2016), no. 1, 95-104.
[20] W. Lee and E. Park, On the minimal free resolution of curves of maximal regularity. Bull. Korean Math. Soc. 53 (2016), no. 6, 1707-1714.
[21] W. Lee, E. Park and P. Schenzel, On the classification of non-normal cubic hypersurfaces. J. Pure Appl. Algebra 215 (2011), 2034-2042.
[22] W. Lee, E. Park and P. Schenzel, On the classification of non-normal complete intersection of two quadrics. J. Pure Appl. Algebra 216 (2012), no. 5, 1222-1234.
[23] D. Mumford, Lectures on curves on an algebraic surface. With a section by G. M. Bergman. Annals of Mathematics Studies, No. 59 Princeton University Press, Princeton, N.J. 1966 xi+200 pp.
[24] U. Nagel, Arithmetically Buchsbaum divisors on varieties of minimal degree. Transactions of the American Mathematical Society 351, 4381-4409 (1999)
[25] U. Nagel, Minimal free resolutions of projective subschemes of small degree. Syzygies and Hilbert functions, 209232, Lect. Notes Pure Appl. Math., 254, Chapman and Hall/CRC, Boca Raton, FL, 2007.
[26] E. Park, Projective curves of degree = codimension+2. Math. Z. 256 (2007), no. 3, 685697
[27] E. Park, On hypersurfaces containing projective varieties. Forum Math. 27 (2015), no. 2, 843-875
[28] Schreyer,F-O, Syzygies of canonical curves and special linear series, Math.Ann.275,105137 (1986).
[29] Fyodor Zak, Determinants of projective varieties and their degrees. Algebraic transformation groups and algebraic varieties, 207-238, Encyclopaedia Math. Sci., 132, Springer, Berlin, 2004.

Wanseok LEE

Pukyong National University, Department of applied Mathematics, Daeyeon Campus 45, Yongso-ro, Nam-Gu, Busan, Republic of Korea

E-mail address: wslee@pknu.ac.kr
Shuailing Yang
Pukyong National University, Department of applied Mathematics, Daeyeon Campus 45, Yongso-ro, Nam-Gu, Busan, Republic of Korea

E-mail address: shuailinglily@gmail.com

[^0]: Received October 16, 2017; Accepted January 2, 2018.
 2010 Mathematics Subject Classification. Primary: 14H45,14H50 and 14N05.
 Key words and phrases. minimal generator, Castelnuovo-Mumford regularity, rational curve.

 This work was supported by a Research Grant of Pukyong National University(2016 year).

