East Asian Math. J.
Vol. 34 (2018), No. 1, pp. 017-020
http://dx.doi.org/10.7858/eamj.2018.002

ON HARDY-BENNETT INEQUALITY

Ern Gun Kwon

Abstract

Hardy-Bennett inequality is an inequality of Hardy-type having logarithmic weight. It appeared in 1973, and several generalizations followed. We, in this note, present another generalization with a simple proof.

1. Hardy-Bennett inequality

The classical Hardy's inequality reads:

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(y) d y\right)^{p} d x<\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f^{p}(x) d x \tag{1.1}
\end{equation*}
$$

where f is a nonnegative function of $L^{p}(0, \infty)$ and $p>1$. In 1928, Hardy [1] proved a weighted modification of (1.1):

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(y) d y\right)^{p} x^{a} d x<\left(\frac{p}{p-1-a}\right)^{p} \int_{0}^{\infty} f^{p}(x) x^{a} d x \tag{1.2}
\end{equation*}
$$

where f is a nonnegative measurable function on $(0, \infty)$ and $p>1, a<p-1$. The constant

$$
\left(\frac{p}{p-1-a}\right)^{p}
$$

is the best possible.
Due to significance and usefulness of (1.1) and (1.2), there have been quite a lot of researches on their variants, proofs, and extensions. For basic examples, one may see [2].

In 1973, Bennett [3] proved the following:
Theorem A. Let $\alpha>0,1 \leq p \leq \infty$, and f be a nonnegative and measurable function on $[0,1]$. Then

[^0]\[

$$
\begin{align*}
& \left\{\int_{0}^{1}[\log (e / x)]^{\alpha p-1}\left(\int_{0}^{x} f(y) d y\right)^{p} \frac{d x}{x}\right\}^{1 / p} \\
& \leq \alpha^{-1}\left(\int_{0}^{1} x^{p}[\log (e / x)]^{(1+\alpha) p-1} f^{p}(x) \frac{d x}{x}\right)^{1 / p} \tag{1.3}
\end{align*}
$$
\]

and

$$
\begin{align*}
& \left\{\int_{0}^{1}[\log (e / x)]^{-\alpha p-1}\left(\int_{x}^{1} f(y) d y\right)^{p} \frac{d x}{x}\right\}^{1 / p} \tag{1.4}\\
& \quad \leq \alpha^{-1}\left(\int_{0}^{1} x^{p}[\log (e / x)]^{(1-\alpha) p-1} f^{p}(x) \frac{d x}{x}\right)^{1 / p}
\end{align*}
$$

with the usual modification if $p=\infty$.
In 2014, the inequality (1.3) was extended in [4] as

$$
\begin{align*}
\alpha^{p-1}\left(\int_{0}^{1} f(x) d x\right)^{p} & +\alpha^{p} \int_{0}^{1}[\log (e / x)]^{\alpha p-1}\left(\int_{0}^{x} f(y) d y\right)^{p} \frac{d x}{x} \tag{1.5}\\
& \leq \int_{0}^{1} x^{p}[\log (e / x)]^{(1+\alpha) p-1} f^{p}(x) \frac{d x}{x}
\end{align*}
$$

where f is a nonnegative measurable function on $[0,1]$ and $p>1, \alpha>0$.
We, in this paper, generalize the inequalities (1.5) and (1.4) to a Hardy-type inequality with general weight by a simple elementary method different from that in [4].

2. A generalization and simple proof

Theorem 2.1. Let $1 \leq p<\infty$ and $a<b<\infty$. Let H be a monotone function having continuous derivative on $[a, b]$. Then the following inequalities remain valid for all nonnegative measurable functions f on $[a, b]$:

$$
\begin{array}{r}
p e^{-H(b)}\left(\int_{a}^{b} f(t) d t\right)^{p}+\int_{a}^{b}\left(\int_{a}^{x} f(t) d t\right)^{p}\left|\left(e^{-H(x)}\right)^{\prime}\right| d x \tag{2.1}\\
\leq p^{p} \int_{a}^{b} f^{p}(x)\left|\left(e^{-H(x)}\right)^{\prime}\right|\left|H^{\prime}(x)\right|^{-p} d x
\end{array}
$$

if H is increasing;

$$
\begin{array}{r}
p e^{-H(a)}\left(\int_{a}^{b} f(t) d t\right)^{p}+\int_{a}^{b}\left(\int_{x}^{b} f(t) d t\right)^{p}\left|\left(e^{-H(x)}\right)^{\prime}\right| d x \tag{2.2}\\
\leq p^{p} \int_{a}^{b} f^{p}(x)\left|\left(e^{-H(x)}\right)^{\prime}\right|\left|H^{\prime}(x)\right|^{-p} d x
\end{array}
$$

if H is decreasing.

Proof. By the density argument, it is sufficient to prove the inequalities for f continuous on $[a, b]$. Fix such a nonnegative function f. Let $\nu=\exp (-H)$.

For (2.1), we find ν decreasing and let $F(x)=\int_{a}^{x} f(t) d t$. Noting that $F^{\prime}(x)=$ $f(x)$ and that $F(a)=0$, integration by parts gives

$$
\begin{equation*}
-\int_{a}^{b} \nu^{\prime}(x) F^{p}(x) d x=-\nu(b) F^{p}(b)+p \int_{a}^{b} \nu(x) F^{p-1}(x) f(x) d x . \tag{2.3}
\end{equation*}
$$

Applying Hölder inequality and the arithmetic-geometric mean inequality, we obtain

$$
\begin{align*}
& p \int_{a}^{b} \nu(x) F^{p-1}(x) f(x) d x \\
\leq & p\left(-\int_{a}^{b} \nu^{\prime}(x) F^{p}(x) d x\right)^{(p-1) / p}\left(\int_{a}^{b}[\nu(x)]^{p}\left[-\nu^{\prime}(x)\right]^{-p+1} f^{p}(x) d x\right)^{1 / p} \tag{2.4}\\
\leq & \frac{p-1}{p}\left(-\int_{a}^{b} \nu^{\prime}(x) F^{p}(x) d x\right)+\frac{p^{p}}{p}\left(\int_{a}^{b}[\nu(x)]^{p}\left[-\nu^{\prime}(x)\right]^{-p+1} f^{p}(x) d x\right) .
\end{align*}
$$

Now, a simple arrangement and calculation after substituting (2.4) into (2.3) makes

$$
\begin{equation*}
p \nu(b) F^{p}(b)-\int_{a}^{b} F^{p}(x) \nu^{\prime}(x) d x \leq-p^{p} \int_{a}^{b} f^{p}(x) \nu^{\prime}(x)\left[\left(\log \frac{1}{\nu(x)}\right)^{\prime}\right]^{-p} d x \tag{2.5}
\end{equation*}
$$

Substituting $H=-\log \nu$ in (2.5) yields (2.1).
For (2.2), we see that ν is increasing and let $G(x)=\int_{x}^{b} f(t) d t$. Noting that $G^{\prime}(x)=-f(x)$ for $x \in(a, b)$ and that $G(b)=0$, integration by parts gives

$$
\begin{equation*}
\int_{a}^{b} \nu^{\prime}(x) G^{p}(x) d x=-\nu(a) G^{p}(a)+p \int_{a}^{b} \nu(x) G^{p-1}(x) f(x) d x \tag{2.6}
\end{equation*}
$$

It follows as before that

$$
\begin{align*}
& p \int_{a}^{b} \nu(x) G^{p-1}(x) f(x) d x \\
\leq & p\left(\int_{a}^{b} \nu^{\prime}(x) G^{p}(x) d x\right)^{(p-1) / p}\left(\int_{a}^{b}[\nu(x)]^{p}\left[\nu^{\prime}(x)\right]^{-p+1} f^{p}(x) d x\right)^{1 / p} \tag{2.7}\\
\leq & \frac{p-1}{p}\left(\int_{a}^{b} \nu^{\prime}(x) G^{p}(x) d x\right)+\frac{p^{p}}{p}\left(\int_{a}^{b}[\nu(x)]^{p}\left[\nu^{\prime}(x)\right]^{-p+1} f^{p}(x) d x\right)
\end{align*}
$$

by Hölder inequality and the arithmetic-geometric mean inequality. Now, a simple arrangement and calculation after substituting (2.7) into (2.6) makes

$$
\begin{equation*}
p \nu(a) G^{p}(a)+\int_{a}^{b} G^{p}(x) \nu^{\prime}(x) d x \leq p^{p} \int_{a}^{b} f^{p}(x) \nu^{\prime}(x)\left[\left(\log \frac{1}{\nu(x)}\right)^{\prime}\right]^{-p} d x \tag{2.8}
\end{equation*}
$$

whence substituting $H=-\log \nu$ in (2.8) gives (2.2).
Remark 2.2. (1) By taking $\alpha>0, p>1, a=0, b=1$ and $e^{-H(x)}=v(x)=$ $\frac{1}{\alpha p}\left(\log \frac{e}{x+\epsilon}\right)^{\alpha p}$ in (2.1) and letting $\epsilon \rightarrow 0$, it reduces to (1.5).

Also, by taking $\alpha>0, p>1, a=0, b=1$ and $e^{-H(x)}=v(x)=\frac{1}{\alpha p}\left(\log \frac{e}{x+\epsilon}\right)^{-\alpha p}$ in (2.2) and letting $\epsilon \rightarrow 0$, it reduces to (1.4).
(2) Concerning a further extension, the inequality (1.4) was extended in [4] as

$$
\begin{align*}
& \alpha^{p-1}\left(\int_{0}^{1} f(x) d x\right)^{p}+\alpha^{p} \int_{0}^{1}[\log (e / x)]^{\alpha p-1}\left(\int_{x}^{1} f(y) d y\right)^{p} \frac{d x}{x} \\
& \quad \leq \int_{0}^{1} x^{p}[\log (e / x)]^{(1-\alpha) p-1} f^{p}(x) \frac{d x}{x}, \tag{2.9}
\end{align*}
$$

where f is a nonnegative measurable function on $[0,1]$ and $p>1, \alpha>0$.
We can check by taking simply $f=1$ and $\alpha=1$ that the right hand side is less than 1 while the left hand side is bigger than 1 , whence (2.9) is a mistake.

References

[1] G. H. Hardy, Notes on some points in the integral calculus, LXIV. Further inequalities between integrals, Messenger Math. 57 (1928), 12-16.
[2] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, 2nd ed., Cambridge University Press, 1952.
[3] C. Bennett, Intermediate spaces and the class Llog ${ }^{+}$L, Ark. Math. 11 (1973), 215-228.
[4] Sorina Barza, Lars-Erik Persson and Natasha Samko, Some new sharp limit Hardy-type inequalities via convexity, J. Inequal. App. 2014 (2014), Article ID 6.

Ern Gun Kwon
Department of Math-Education, Andong National University, 36729 Korea
E-mail address: egkwon@anu.ac.kr

[^0]: Received December 11, 2017; Accepted December 13, 2017.
 2010 Mathematics Subject Classification. 26D15.
 Key words and phrases. Hardy inequality, Hardy-Bennett inequality.
 This work was supported by a grant from 2017 Research Fund of Andong National University.

