DOI QR코드

DOI QR Code

Investigation of soil behaviour due to excavation below the grouped pile according to shape of tunnel station

터널 정거장 형상에 따른 군말뚝 하부 굴착 시 지반거동 연구

  • Kong, Suk-Min (Dept. of Civil Engineering, Seoul National University of Science & Technology) ;
  • Oh, Dong-Wook (Dept. of Civil Engineering, Seoul National University of Science & Technology) ;
  • Lee, Jong-Hyen (Dept. of Civil Engineering, Seoul National University of Science & Technology) ;
  • Lee, Yong-Joo (Dept. of Civil Engineering, Seoul National University of Science & Technology)
  • 공석민 (서울과학기술대학교 건설시스템공학과) ;
  • 오동욱 (서울과학기술대학교 건설시스템공학과) ;
  • 이종현 (서울과학기술대학교 건설시스템공학과) ;
  • 이용주 (서울과학기술대학교 건설시스템공학과)
  • Received : 2017.12.01
  • Accepted : 2018.01.05
  • Published : 2018.01.31

Abstract

Tunnels are widely used for special purposes including roads, railways and culvert for power transmission, etc. Its cross-section shape is determined by uses, ground condition, environmental or economic factor. Many papers with respect to behaviours of adjacent ground and existing structure tunnelling-induced have been published by many researchers, but tunnel cross-section have rarely been considered. A collapse of tunnel causes vaster human and property damage than structures on the ground. Thus, it is very important to understand and analyse the relationship between behavoiurs of ground and cross-section type of tunnel. In this study, the behaviour of ground due to tunnel excavation for underground station below the grouped pile supported existing structure was analysed through laboratory model test using a trap-door device. Not only two cross-section types, 2-arch and box, as station for tunnel, but also, offset between tunnel and grouped pile centre (0.1B, 0.25B, 0.4B) are considered as variable of this study. In order to measure underground deformation tunnelling-induced, Close Range Photogrammetry technique was applied with laboratory model test, and results are compared to numerical analysis.

터널은 도로, 철도, 지하철과 같은 교통의 통로이자 수로, 전력구, 비축기지와 같은 특수목적을 위해 널리 활용되고 있으며, 터널의 사용 목적, 주변 지반조건 및 경제성에 따라 다양한 터널 형상으로 시공되고 있다. 이에 대해 기존 터널과 주변지반 및 구조물에 관한 연구는 꾸준하게 발표되었으나 단일 형상에 대해 터널굴착 시 주변 지반과 구조물의 거동을 분석한 연구들이 대다수이다. 터널의 붕괴사고는 지상 구조물의 붕괴사고 보다 막대한 인적, 물적 손실을 가져오기 때문에 터널 굴착 및 주변지반의 거동을 관측하고 분석하는 작업은 매우 중요하며, 단일 형상이 아닌 다양한 터널 형상에 대한 연구가 필요할 것으로 판단된다. 따라서, 본 연구는 trapdoor장치를 이용한 실내 모형시험을 통해 군말뚝 하부에 터널 정거장 굴착 시 주변지반의 거동을 측정하였다. 이때 터널 정거장 형상의 단면을 arch와 box 형태로 제작하였으며, 각 터널 정거장 형상 별 0.1B, 0.25B, 0.4B로 터널과 군말뚝 간 이격거리를 다르게 하여 다양한 조건에서의 지반거동을 분석하였다. 또한, 근거리 사진계측 및 이미지프로세싱 기법을 통해 지반의 거동을 관측하였으며, 유한요소 수치해석을 통해 실내 모형시험, 근거리 사진계측의 결과와 비교 분석하였다.

Keywords

References

  1. Das, B.M. (2009), Principles of geotechnical engineering, 7th Edition, Cengage learning, San Francisco, pp. 302-303.
  2. Han, Y.C., Kim, S.H., Jung, S.S. (2014), "Ground behavior around tunnel using tunnel-shaped trapdoor model test", Journal of the Korean Geotechnical Society, Vol. 30, No. 4, pp. 65-80. https://doi.org/10.7843/KGS.2014.30.4.65
  3. Jeon, Y.J., Kim, S.H., Lee, C.J. (2015), "A study on the effect of tunnelling to adjacent single piles and pile groups considering the transverse distance of pile tips from the tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 6, pp. 637-652. https://doi.org/10.9711/KTAJ.2015.17.6.637
  4. Jeon, Y.J., Kim, S.H., Kim, J.S., Lee, C.J. (2017), "A study on the effects of ground reinforcement on the behaviour of pre-existing piles affected by adjacent tunnelling", Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 3, pp. 389-407. https://doi.org/10.9711/KTAJ.2017.19.3.389
  5. John, A. (2007), The mechanics of soils and foundations, 2nd Edition, Taylor & Francis, London, pp. 404-406.
  6. Kong, S.M., Jung, H.S., Lee, Y.J (2017), "Investigation of ground behaviour adjacent to an embedded pile according to various tunnel volume losses", International Journal of Geo-Engineering, Vol. 8, No. 5, pp. 1-15. https://doi.org/10.1186/s40703-016-0038-3
  7. Kong, S.M., Oh, D.W., Ahn, H.Y., Lee, H.G., Lee, Y.J. (2016), "Investigation of ground behaviour between plane-strain grouped pile and 2-arch tunnel station excavation", Journal of Korean Tunnelling and Underground Space Association, Vol. 18, No. 6, pp. 535-544. https://doi.org/10.9711/KTAJ.2016.18.6.535
  8. Kim, J.D., Park, Y.J. (2013), Tunnel design and construction-basic for expert, 1st Edition, CIR, Seoul, pp. 19-21.
  9. Lambe, T.W., Whitman, R.V. (1979), Soil Mechanics, SI Version, John Wiley & Son, Massachusetts, pp. 31.
  10. Lee, C.J., Jeon, Y.J. (2015), "A study on the effect of the locations of pile tips on the behaviour of piles to adjacent tunnelling", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 2, pp. 91-105. https://doi.org/10.9711/KTAJ.2015.17.2.091
  11. Lee, Y.-J., Bassett, R.H. (2006), "Application of a photogrammetric technique to a model tunnel", Tunnelling and Underground Space Technology, Vol. 21, No. 1, pp. 79-95. https://doi.org/10.1016/j.tust.2005.06.005
  12. Oh, D.W., Lee, Y.J. (2017), "Analysis of pile load distribution and ground behaviour depending on vertical offset between pile tip and tunnel crown in sand through laboratory model test", Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 3, pp. 355-373. https://doi.org/10.9711/KTAJ.2017.19.3.355
  13. Plaxis (2016), Reference manual, pp. 1-307.
  14. Terzaghi, K. (1936), "Stress distribution in dry and in saturated sand above a yielding trap-door", Proceedings of International Conference of Soil Mechanics, Harvard University, Cambridge (USA), Vol. 1, pp. 307-311.
  15. Korean Tunnelling and Underground Space Association (2009), "Tunnel and underground space in Korea", CIR, Seoul, pp. 25-92.