DOI QR코드

DOI QR Code

Facile preparation of electrodes derived from graphene oxide@metal organic framework hybrid materials and their electrochemical property

  • Hong, Jin-Young (School of Chemical and Biochemical Engineering, Pusan National University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University) ;
  • Kim, Seok (School of Chemical and Biochemical Engineering, Pusan National University) ;
  • Chung, Sungwook (School of Chemical and Biochemical Engineering, Pusan National University)
  • Received : 2017.09.30
  • Accepted : 2017.10.30
  • Published : 2018.01.31

Abstract

Keywords

References

  1. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359 (2001). https://doi.org/10.1038/35104644.
  2. Croguennec L, Palacin MR. Recent achievements on inorganic electrode materials for lithium-ion batteries. J Am Chem Soc, 137, 3140 (2015). https://doi.org/10.1021/ja507828x.
  3. Wen ZS, Yang J, Wang BF, Wang K, Liu Y. High capacity silicon/ carbon composite anode materials for lithium ion batteries. Electrochem Commun, 5, 165 (2003). https://doi.org/10.1016/S1388-2481(03)00009-2.
  4. Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today, 18, 252 (2015). https://doi.org/10.1016/j.mattod.2014.10.040.
  5. Salunkhe RR, Lee YH, Chang KH, Li JM, Simon P, Tang J, Torad NL, Hu CC, Yamauchi Y. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chem Eur J, 20, 13838 (2014). https://doi.org/10.1002/chem.201403649.
  6. Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium- sulfur batteries. Acc Chem Res, 46, 1125 (2013). https://doi. org/10.1021/ar300179v.
  7. Guo J, Xu Y, Wang C. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett, 11, 4288 (2011). https://doi.org/10.1021/nl202297p.
  8. Pang Q, Liang X, Kwok CY, Nazar LF. Review: the importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium-sulfur batteries. J Electrochem Soc, 162, 4, A2567 (2015). https://doi.org/10.1149/2.0171514jes.
  9. Evers S, Nazar LF. New approaches for high energy density lithium- sulfur battery cathodes. Acc Chem Res, 46, 5, 1135 (2013). https://doi.org/10.1021/ar3001348.
  10. Lee HY, Kim KY, Kim S. Electrochemical characterization of nano-structured graphene oxide/CNT electrodes containing sulfur for lithium rechargeable cells. J Nanosci Nanotechnol, 16, 9186 (2016). https://doi.org/10.1166/jnn.2016.12888.
  11. Lee HY, Jung Y, Kim S. Conducting polymer coated graphene oxide electrode for rechargeable lithium-sulfur batteries. J Nanosci Nanotechnol, 16, 2692 (2016). https://doi.org/10.1166/ jnn.2016.11061.
  12. Kim KY, Jung Y, Kim S. Study on urea precursor effect on the electroactivities of nitrogen-doped graphene nanosheets electrodes for lithium cells. Carbon Lett, 19, 40 (2016). https://doi.org/10.5714/CL.2016.19.040.
  13. Kim S, Sohn HJ, Hong SK, Park SJ. Preparation and electrochemical characterization of platinum and ruthenium catalysts deposited on fluorinated carbon supports. J Appl Electrochem, 39, 1553 (2009). https://doi.org/10.1007/s10800-009-9837-y.
  14. Kim J, Kim S. Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties. Appl Surf Sci, 295, 31 (2014). https://doi.org/10.1016/j.apsusc. 2013.12.156.
  15. Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y. Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc, 137, 1572 (2015). https://doi.org/10.1021/ja511539a.
  16. Huang XC, Lin YY, Zhang JP, Chen XM. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem, 118, 1587 (2006). https://doi.org/10.1002/ange.200503778.
  17. Liu X, Wang C, Wu Q, Wang Z. Metal-organic framework-templated synthesis of magnetic nanoporous carbon as an efficient absorbent for enrichment of phenylurea herbicides. Anal Chim Acta, 870, 67 (2015). https://doi.org/10.1016/j.aca.2015.02.036.