참고문헌
- Zhong B, Zhao GL, Huang XX, Liu J, Chai ZF, Tang XH, Wen GW, Wu Y. Binding natural graphite with mesophase pitch: a promising route to future carbon blocks. Mater Sci Eng A, 610, 250 (2014). https://doi.org/10.1016/j.msea.2014.05.038.
- Predeanu G, Panaitescu C, Bălănescu M, Bieg G, Borrego AG, Diez MA, Hackley P, Kwiecińska B, Marques M, Mastalerz M, Misz-Kennan M, Pusz S, Suarez Ruiz I, Rodrigues S, Singh AK, Varma AK, Zdravkov A, Zivotic D. Microscopical characterization of carbon materials derived from coal and petroleum and their interaction phenomena in making steel electrodes, anodes and cathode blocks for the Microscopy of Carbon Materials Working Group of the ICCP. Int J Coal Geol, 139, 63 (2015). https://doi.org/10.1016/j.coal.2014.07.011.
- Kim BJ, Eom Y, Kato O, Miyawaki J, Kim BC, Mochida I, Yoon SH. Preparation of carbon fibers with excellent mechanical properties from isotropic pitches. Carbon, 77, 747 (2014). https://doi.org/10.1016/j.carbon.2014.05.079.
- Panaitescu C, Predeanu G. Microstructural characteristics of toluene and quinoline-insolubles from coal-tar pitch and their cokes. Int J Coal Geol, 71, 448 (2007). https://doi.org/10.1016/j.coal.2006.11.003.
- Guillen MD, Diaz C, Blanco CG. Characterization of coal tar pitches with different softening points by 1H NMR: role of the different kinds of protons in the thermal process. Fuel Process Technol, 58, 1 (1998). https://doi.org/10.1016/s0378-3820(98)00080-0.
- Bhatia G, Aggarwal RK, Chari SS, Jain GC. Rheological characteristics of coal tar and petroleum pitches with and without additives. Carbon, 15, 219 (1977). https://doi.org/10.1016/0008- 6223(77)90003-3.
- Liu D, Lou B, Li M, Qu F, Yu R, Yang Y, Wu C. Study on the preparation of mesophase pitch from modified naphthenic vacuum residue by direct thermal treatment. Energy Fuels, 30, 4609 (2016). https://doi.org/10.1021/acs.energyfuels.6b00392.
- Mochida I, Toshima H, Korai Y, Varga T. Comparative evaluation of mesophase pitches derived from coal tar and FCC-DO. J Mater Sci, 25, 3484 (1990). https://doi.org/10.1007/bf00575374.
- Mochida I, Korai Y, Ku CH, Watanabe F, Sakai Y. Chemistry of synthesis, structure, preparation and application of aromaticderived mesophase pitch. Carbon, 38, 305 (2000). https://doi.org/10.1016/s0008-6223(99)00176-1.
- Tremblay C, Armstrong B, Theriault G, Brodeur J. Estimation of risk of developing bladder cancer among workers exposed to coal tar pitch volatiles in the primary aluminum industry. Am J Ind Med, 27, 335 (1995). https://doi.org/10.1002/ajim.4700270303.
-
Azami K, Yamamoto S, Yokono T, Sanada Y. In-situ monitoring for mesophase formation processes of various pitches by means of high-temperature
$^{13}C$ -NMR. Carbon, 29, 943 (1991). https://doi.org/10.1016/0008-6223(91)90172-f. - Kershaw JR, Black KJT. Structural characterization of coal-tar and petroleum pitches. Energy Fuels, 7, 420 (1993). https://doi.org/10.1021/ef00039a014.
- Perez M, Granda M, Santamaria R, Morgan T, Menendez R. A thermoanalytical study of the co-pyrolysis of coal-tar pitch and petroleum pitch. Fuel, 83, 1257 (2004). https://doi.org/10.1016/j. fuel.2003.11.012.
- Marsh H, Gerus-Piasecka I, Grint A. Carbonization and liquid crystal (mesophase) development. 14. Co-carbonization of coals with A240 Ashland petroleum pitch: effects of conditions of carbonization upon optical textures of resultant cokes. Fuel, 59, 343 (1980). https://doi.org/10.1016/0016-2361(80)90221-5.
- Huttinger KJ, Rosenblatt U. Pressure effects on the yield and on the microstructure formation in the pyrolysis of coal tar and petroleum pitches. Carbon, 15, 69 (1977). https://doi.org/10.1016/0008-6223(77)90020-3.
- Kim JG, Kim JH, Song BJ, Lee CW, Im JS. Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO). J Ind Eng Chem, 36, 293 (2016). https://doi.org/10.1016/j.jiec.2016.02.014.
- Martinez-Escandell M, Rodriguez-Valero MA, Coronado JS, Rodriguez-Reinoso F. Modification of the sintering behaviour of mesophase powder from a petroleum residue. Carbon, 40, 2843 (2002). https://doi.org/10.1016/s0008-6223(02)00205-1.
- Edwards WF, Jin L, Thies MC. MALDI-TOF mass spectrometry: obtaining reliable mass spectra for insoluble carbonaceous pitches. Carbon, 41, 2761 (2003). https://doi.org/10.1016/s0008-6223(03)00386-5.
- Guisnet M, Magnoux P. Organic chemistry of coke formation. Appl Catal A Gen, 212, 83 (2001). https://doi.org/10.1016/s0926- 860x(00)00845-0.
- Blanco C, Santamaria R, Bermejo J, Menendez R. A comparative study of air-blown and thermally treated coal-tar pitches. Carbon, 38, 517 (2000). https://doi.org/10.1016/s0008-6223(99)00131-1.
- Barb WG. Effect of chemical structure on the softening point of substituted polystyrenes and related materials. J Polym Sci, 37, 515 (1959). https://doi.org/10.1002/pol.1959.1203713220.
- Blake ES, Hammann WC, Edwards JW, Reichard TE, Ort MR. Thermal stability as a function of chemical structure. J Chem Eng Data, 6, 87 (1961). https://doi.org/10.1021/je60009a020.
- Kim JG, Kim JH, Song BJ, Lee CW, Lee YS, Im JS. Empirical approach to determine molecular weight distribution using MALDITOF analysis of petroleum-based heavy oil. Fuel, 186, 20 (2016). https://doi.org/10.1016/j.fuel.2016.08.052.