DOI QR코드

DOI QR Code

Growth and Development of Cherry Tomato Seedlings Grown under Various Combined Ratios of Red to Blue LED Lights and Fruit Yield and Quality after Transplanting

다양한 조합의 적색과 청색 혼합 LED광에서 자란 방울 토마토 묘의 생육과 정식 후 수확량 및 품질

  • Son, Ki-Ho (Division of Animal, Horticultural and Food Sciences, Chungbuk National University) ;
  • Kim, Eun-Young (Yeongdong Country Agricultural Technology & Extension Center) ;
  • Oh, Myung-Min (Division of Animal, Horticultural and Food Sciences, Chungbuk National University)
  • 손기호 (충북대학교 축산.원예.식품공학부 원예학전공) ;
  • 김은영 (영동군 농업기술센터) ;
  • 오명민 (충북대학교 축산.원예.식품공학부 원예학전공)
  • Received : 2017.11.01
  • Accepted : 2017.12.29
  • Published : 2018.01.31

Abstract

Red and blue lights are effective wavelengths for photosynthesis in plants. In this study, we determined the effects of various combined ratios of red to blue LEDs on the quality of cherry tomato seedlings prior to transplantation, and their subsequent effects on the yield and quality of tomato fruits after transplanting. Two-week-old cherry tomato seedlings (Solanum lycopersicum cv. 'Cuty') were cultivated under various combined ratios of red (R; peak wavelength 655 nm) to blue (B; 456 nm) LEDs [red:blue = 41:59 (59B), 53:47 (47B), 65:35 (35B), 74:26 (26B), 87:13 (13B), or 100:0 (0B)] and fluorescent lamps and raised for 27 days. The cherry tomato seedlings were subsequently transplanted into a venlo-type greenhouse and cultivated for 75 days. At the seedling stage, the shoot fresh weight of seedlings in all RB combined treatments, except 0B and 59B, was higher than that of the control after 27 days of LED treatment. Shoot dry weight and leaf area also showed trends similar to that of shoot fresh weight. The stem length was significantly higher in 13B, 26B, and 35B treatments compared with the control and other treatments. In particular, the stem length of 26B plants was approximately 3.2 times longer than that of 59B plants. At 37 days after transplanting, the number of nodes was significantly higher in 26B and 47B plants, and the plant height of 26B plants was significantly higher than that of control and 59B plants. Total fruit yield in 26B plants, which was the highest, was approximately 1.6 and 1.8 times higher than that in control and 59B plants, respectively. Thus, the results of this study indicate that various combined ratios of red to blue LEDs directly affected to the growth of cherry tomato seedlings and may also affect parameters of reproductive growth such as fruit yield after transplantation.

적색과 청색광은 식물의 광합성에 효과적인 파장으로 알려져 있다. 본 연구는 다양한 조합의 적색과 청색 LED 혼합광에서 자란 방울 토마토 묘의 생장과 정식 후의 생산량과 품질에 대한 영향을 구명하였다. 파종 후 2주된 방울 토마토 묘(Solanum lycopersicum L. cv. 'Cuty')를 적색(655nm)과 청색(456nm) LED의 다양한 비율의 혼합광[red:blue = 41:59 (59B), 53:47 (47B), 65:35 (35B), 74:26 (26B), 87:13 (13B), or 100:0(0B)]과 형광등(대조구)이 설치된 생장상에 옮겨준 후 $25/20^{\circ}C$ (주/야), 광합성 광량자속 $198.6{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ (12시간)의 조건에서 27일간 육묘하였다. 그 후 방울 토마토를 벤로형 온실에 정식하여 75일동안 재배하였다. 정식 전 육묘 단계에서 27일간 LED 처리된 0B 와 59B 처리구를 제외한 모든 RB 혼합광 처리의 지상부 생체중이 대조구에 비해 높았다. 지상부 건물중과 엽면적 또한 지상부 생체중과 유사한 경향을 보였다. 줄기 신장은 13B, 26B, 35B에서 대조구와 다른 처리구들에 비해 유의적으로 가장 높았다. 특히, 26B는 59B처리에 비해 약 3.2배 높은 줄기 신장을 보였다. 정식 후 37일 째에 마딧수는 26B와 47B에서 유의적으로 가장 높았고, 식물 초장은 26B에서 대조구와 59B에 비해 유의적으로 높았다. 가장 높은 총 과실 생산량을 보였던 26B는 대조구에 비해 1.6배, 59B에 비해 1.8배 높은 총 과실 생산량을 보였다. 따라서, 본 연구는 적색과 청색 LED의 다양한 혼합 비율이 방울 토마토 묘의 생장 및 발달과 정식 후의 과실 생산량과 같은 생식생장에 영향에 중요한 요소임을 제시한다.

Keywords

References

  1. Ahmad, M. and A.R. Cashmore. 1996. Seeing blue: the discovery of cryptochrome. Plant Mol. Biol. 30:851-861.
  2. Brown, C.S., A.C. Shuerger, and J.C. Sager. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Amer. Soc. Hort. Sci. 120:808-813.
  3. Buso, G.S.C. and F.A. Bliss. 1988. Variability among lettuce cultivars grown at two levels of available phosphorus. Plant Soil 111:67-73. https://doi.org/10.1007/BF02182038
  4. Buwalda, F., E.J. van Henten, A. de Gelder, J. Bontsema, and J. Hemming. 2006. Toward an optimal control strategy for sweet pepper cultivation. 1. A dynamic crop model. Acta Hort. 718:391-398.
  5. Fan, X.X., Z.G. Xu, X.Y. Liu, C.M. Tang, L.W. Wang, and X.L. Han. 2013. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci. Hortic. 153:50-55. https://doi.org/10.1016/j.scienta.2013.01.017
  6. Garcia-Closas, R., A. Berenguer, M.J. Tormo, M.J. Sanchez, J.R. Quiros, C. Navarro, R. Amaud, M. Dorronsoro, M.D. Chirlaque, A. Barricarte, E. Ardanaz, P. Amiano, C. Martinez, A. Agudo, and C.A. Gonzalez. 2004. Dietary sources of vitamin C, vitamin E, and specific carotenoids in Spain. Brit. J. Nutr. 91:1005-1011.
  7. Goins, G.D., N.C. Yorio, M.M. Sanwo, and C.S. Brown. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J. Exp. Bot. 48:1407-1413. https://doi.org/10.1093/jxb/48.7.1407
  8. Gupta, S.D. and B. Jatothu. 2013. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol. Rep. 7:211-220. https://doi.org/10.1007/s11816-013-0277-0
  9. Hernandez, R. and C. Kubota. 2016. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 121:66-74. https://doi.org/10.1016/j.envexpbot.2015.04.001
  10. Hopkins, W.G. and N.P.A. Huner. 2004. Introduction to plant physiology. 3rd Ed. John Wiley and Sons, Hoboken, NJ., USA.
  11. Johkan, M., K. Shoji, F. Goto, S. Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814.
  12. Kim, E.Y., S.A. Park, B.J. Park, Y. Lee, and M.M. Oh. 2014. Growth and antioxidant phenolic compounds in cherry tomato seedlings grown under monochromatic light-emitting diodes. Hort. Environ. Biotechnol. 55:506-513. https://doi.org/10.1007/s13580-014-0121-7
  13. Kozai T. 2013. Sustainable plant factory: Closed plant production systems with artificial light for high resource use efficiencies and quality produce. Acta Hort. 1004:27-40.
  14. Lee, J.S., H.I. Lee, and Y.H. Kim. 2012. Seedling quality and early yield after transplanting of paprika nursed under lightemitting diodes, fluorescent lamps and natural light. J. Bio-Environ. Control 21:220-227.
  15. Li, Y., G. Xin, M. Wei, Q. Shi, F. Yang, and X. Wang. 2017. Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities. Sci. Hortic. 225: 490-497. https://doi.org/10.1016/j.scienta.2017.07.053
  16. Liu, X.Y., S.R. Guo, T.T. Chang, Z.G. Xu, and T. Takafumi. 2012. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). Afri. J. Biotechnol. 11:6169-6177.
  17. Massa, G.D., H.H Kim, R.M. Wheeler, and C.A. Mitchell. 2008. Plant productivity in response to LED lighting. Hort-Science 43:1951-2008.
  18. McNellis, T.W. and X.W. Deng. 1995. Light control of seedling morphogenetic pattern. J. Plant Cell 7:1749-1761. https://doi.org/10.1105/tpc.7.11.1749
  19. Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, E. Goto, and K. Kurata. 2004. Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. Plant Cell Physiol. 45:1870-1874. https://doi.org/10.1093/pcp/pch203
  20. Nanya, K., Y. Ishigami, S. Hikosaka, and E. Goto. 2012. Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta Hortic. 956:264-266.
  21. O'Carrigan, A, E. Hinde, N. Lu, X. Xu, H. Duan, G. Huang, M. Mak, B. Bellotti, and Z. Chen. 2014. Effects of light irradiance on stomatal regulation and growth of tomato. Environ. Exp. Bot. 98:65-73. https://doi.org/10.1016/j.envexpbot.2013.10.007
  22. Oh, S.I. 2012. Characteristics and reduction of berry cracking in 'Heukgoosul' and 'Tamnara' grapes (Vitis labruscana B.). PhD. Diss., Univ. of Chungbuk, Cheongju, Korea
  23. Rehman, M., S. Ullah, Y. Bao, B. Wang, D. Peng, and L. Liu. 2017. Light-emitting diodes: whether an efficient source of light for indoor plants? Environ. Sci. Pollut. Res. 1-10.
  24. Riso, P., F. Visioli, G. Testolin, and M. Porrini. 2004. Lycopene and vitamin C concentrations increase in plasma and lymphocytes after tomato intake. Effects on cellular antioxidant protection. Eur. J. Clinical Nutr. 58:350-1358. https://doi.org/10.1038/sj.ejcn.1601789
  25. Rural Development Adminstration (RDA). 2001. Tomato culture (Standard textbook for farming-106). RDA press, Suwon, Korea
  26. Son, K.H. and M.M. Oh. 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988-995.
  27. Terashima, I., T. Fujita, T. Inoue, W.S. Chow, and R. Ohuchi. 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. J. Plant Cell Physiol. 50:684-697. https://doi.org/10.1093/pcp/pcp034
  28. Tripathy, B.C. and C.S. Brown. 1995. Root-shoot interaction in the greening of wheat seedlings grown under red light. Plant Physiol. 107:407-411. https://doi.org/10.1104/pp.107.2.407
  29. Um, Y.C., S.S. Oh, J.G. Lee, S.Y. Kim, and Y.A. Jang. 2010. The development of container-type plant factory and growth of leafy vegetables as affected by different light sources. J. Bio-Environ. Control 19:333-342.
  30. Um, Y.C., Y.A. Jang, J.G. Lee, S.Y. Kim, S.R. Cheong, S.S. Oh, S.H. Cha, and S.C. Hong. 2009. Effects of selective light sources on seedling quality of tomato and cucumber in closed nursery system. J. Bio-Environ. Control 18:370-376.
  31. Wang, H., M. Gu, J. Cui, K. Shi, T. Zhou, and J. Yu. 2009. Effects of light quality on $CO_2$ assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobiol. B. 96:30-37.
  32. Whitelam, G. and K. Halliday. 2007. Light and plant development. Blackwell Publishing, Oxford, UK.
  33. Yorio, N.C., G.D. Goins, H.R. Kagie, R.M. Wheeler, and J.C. Sager. 2001. Improving spinach, radish and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 36:380-383.