DOI QR코드

DOI QR Code

Prediction of The MOR of Larch Lumber

낙엽송 소경각재의 휨 파괴계수 예측

  • Lee, In-Hwan (Program of Forest Biomaterials Engineering, Division of Forest Material Science & Engineering, Kangwon National University) ;
  • Cho, Soo-min (Program of Forest Biomaterials Engineering, Division of Forest Material Science & Engineering, Kangwon National University) ;
  • Hong, Soon-Il (Program of Forest Biomaterials Engineering, Division of Forest Material Science & Engineering, Kangwon National University)
  • 이인환 (강원대학교 산림환경과학대학 산림응용공학부 산림바이오소재공학전공) ;
  • 조수민 (강원대학교 산림환경과학대학 산림응용공학부 산림바이오소재공학전공) ;
  • 홍순일 (강원대학교 산림환경과학대학 산림응용공학부 산림바이오소재공학전공)
  • Received : 2017.12.13
  • Accepted : 2018.01.08
  • Published : 2018.01.25

Abstract

It is necessary to review the non-destructive indexes in order to estimate the bending strength performance of the domestic larch lumber. In this study, MOEs (modulus of elastic) the larch lumber (cross-section $89{\times}120mm$) were evaluated through non-destructive methods such as the ultra-sonic method, longitudinal vibration method, and non-destructive bending method. The non-destructive measurement method which best represented the static MOE was determined and applied as the MOR(modulus of rupture) estimation index. The MOE that was measured through the longitudinal vibration method showed the highest correlation with the static MOE. The MOR was highly related to the static MOE. Therefore, the non-destruction MOE measured through the longitudinal vibration method was used to estimate the MOR of the lumber.

국내산 낙엽송 소경각재의 휨 강도 성능을 예측하기 위하여 비파괴적인 지표의 검토가 필요하다. 본 연구에서는 낙엽송 소경각재(단면 $89{\times}120mm$)를 초음파법, 종진동법, 소하중법의 비파괴 방법으로 탄성계수를 측정하였다. 실측 탄성계수와 유의성이 높은 비파괴 측정 방법을 결정 후 휨 파괴계수 예측 지표로 적용하였다. 종진동법으로 측정된 탄성계수가 실측 탄성계수와 가장 높은 유의성을 나타냈다. 휨 파괴계수와 실측 탄성계수의 유의성도 매우 밀접하게 측정되었으므로 종진동법에 의한 비파괴 탄성계수로 소경각재의 휨 파괴계수를 예측하였다.

Keywords

References

  1. Beall, F.C. 2002. Overview of the use of ultrasonic technologies in research on wood properties. Wood Science and Technology 36(3): 197-212. https://doi.org/10.1007/s00226-002-0138-4
  2. Cavalli, A., Bevilacqua, L., Capecchi, G., Cibecchini, D., Fioravanti, M., Goli, G., Togni, M., Uzielli, L. 2016. MOE and MOR assessment of in service and dismantled old structural timber. Engineering Structures 125: 294-299. https://doi.org/10.1016/j.engstruct.2016.06.054
  3. Jang, S.S. 2000. Effects of moisture content and slope of grain on ultrasonic transmission speed of wood. Journal of the Korean Wood Science and Technology 28(2): 10-18.
  4. Kang, H., Booker, R.E., 2002. Variation of stress wave velocity with MC and temperature. Wood Science and Technology 36(1): 41-54. https://doi.org/10.1007/s00226-001-0129-x
  5. Kim, D.W., Hwang, S.W., Lee, W.H. 2014. A Study on The Mechanical Properties of Korean Red Pine (Geumgangsong, Pinus densiflora forma erecta Uyeki). Journal of the Korean Wood Science and Technology 42(1): 58-67. https://doi.org/10.5658/WOOD.2014.42.1.58
  6. Kodama, Y., Akishika, T. 1993. Non-destructive inspection of defects in woods by use of the pulse-echo technique of ultrasonic waves, 1: Measurements of enclosed knots. Journal of the Japan Wood Research Society (Japan).
  7. Kodama, Y., Akishika, T., Nakao, T., Takahashi, A. 1994. Non-destructive inspection of knots in wood by use of the frequency shift of propagated acoustic waves. Journal of the Japan Wood Research Society (Japan).
  8. Korea forest service, 2016. Survey on actual use of timber.
  9. Mishiro, A. 1995. Ultrasonic velocity in wood and its moisture content, 1: Effects of moisture gradients on ultrasonic velocity in wood. Journal of the Japan Wood Research Society (Japan).
  10. Lee, J.J., Kim, G.M., Bae, M.S. 2003. Investigation of transmission process for ultrasonic wave in wood. Journal of the Korean Wood Science and Technology 31(2): 31-37.
  11. Park, J.C., Hong, S.I. 2008. Determination of localized defects in wood by the transfer time of ultrasonic waves. Journal of the Korean Wood Science and Technology 36(1): 61-68.
  12. Sakai, H., Minamisawa, A., Takagi, K. 1990. Effect of moisture content on ultrasonic velocity and attenuation in woods. Ultrasonics 28(6): 382-385. https://doi.org/10.1016/0041-624X(90)90060-2
  13. Sandoz, J.L. 1993. Moisture content and temperature effect on ultrasound timber grading. Wood Science and Technology 27(5): 373-380. https://doi.org/10.1007/BF00192223