DOI QR코드

DOI QR Code

황산 가수분해 잔사 리그닌을 이용한 나노 세공 활성탄 제조 및 친환경 흡착제로의 활용 가능성 평가

Preparation of Nanoporous Activated Carbon with Sulfuric Acid Lignin and Its Application as a Biosorbent

  • 황혜원 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최준원 (서울대학교 국제농업기술대학원)
  • Hwang, Hyewon (Department of Forest Sciences, Seoul National University) ;
  • Choi, Joon Weon (Graduate School of International Agricultural Technology, Seoul National University)
  • 투고 : 2017.11.16
  • 심사 : 2017.12.13
  • 발행 : 2018.01.25

초록

본 연구에서는 당화 공정 중 축합된 구조로 발생되는 고형 부산물인 황산리그닌(Sulfuric acid lignin; SAL)의 나노 세공 탄소 소재로의 활용 가능성을 살펴보고자 수산화칼륨 촉매를 투입하여 $750^{\circ}C$에서 1 h 동안 고온 촉매 활성화 공정을 진행하였다. 이때 타 바이오매스 시료 유래 활성탄과의 물성 비교를 위해 코코넛셸(CCNS), 소나무(Pinus), Avicel로부터 각각 같은 방법으로 활성탄을 제조하였으며 화학 조성과 결합 구조, 표면 및 기공 분포 특성을 분석하였다. 열중량 분석 결과 최종 온도 $750^{\circ}C$에서 잔존 고형분 함량은 SAL > CCNS > Pinus > Avicel 순서였으며 이 경향은 활성화 공정 후 생성된 활성탄의 수율 순서와 동일하였다. 특히, SAL 유래 활성탄은 탄소 함량이 91.0%, $I_d/I_g$ peak ratio가 4.2로 가장 높게 나타났으며 이는 높은 탄소 고정성과 더불어 비정질의 거대 방향족 구조층이 형성되었음을 의미한다. 또한 제조된 활성탄은 모두 최초 시료의 비표면적($6m^2/g$)과 기공 부피($0.003cm^3/g$)에 비해 촉매 활성화 공정 후 각각 $1065{\sim}2341m^2/g$, $0.412{\sim}1.270cm^3/g$로 크게 증가하였으며 이 중 SAL 유래 활성탄의 표면 변화율이 가장 크게 나타났다. 이후 3종의 유기 오염물질(페놀, 2,4-Dichlorophenoxyacetic acid, 카보퓨란)에 대한 제거율을 평가해보았을 때 모든 활성탄에서 표준 용액 100 ppm 대비 90 mg/g 이상의 높은 흡착 능력을 보였다. 따라서 축합된 구조인 SAL으로부터 고비표면적의 나노 세공 활성탄 제조가 가능할 뿐만 아니라 추후 유기 오염 물질 제거를 위한 카본 필터의 친환경 흡착 소재로 활용가능성이 높을 것으로 기대된다.

In this study, catalytic activation using sulfuric acid lignin (SAL), the condensed solid by-product from saccharification process, with potassium hydroxide at $750^{\circ}C$ for 1 h in order to investigate its potential to nanoporous carbon In this study, catalytic activation using sulfuric acid lignin (SAL), the condensed solid by-product from saccharification process, with potassium hydroxide at $750^{\circ}C$ for 1 h in order to investigate its potential to nanoporous carbon material. Comparison study was also conducted by production of activated carbon from coconut shell (CCNS), Pinus, and Avicel, and each activated carbon was characterized by chemical composition, Raman spectroscopy, SEM analysis, and BET analysis. The amount of solid residue after thermogravimetric analysis of biomass samples at the final temperature of $750^{\circ}C$ was SAL > CCNS > Pinus > Avicel, which was the same as the order of activated carbon yields after catalytic activation. Specifically, SAL-derived activated carbon showed the highest value of carbon content (91.0%) and $I_d/I_g$ peak ratio (4.2), indicating that amorphous large aromatic structure layer was formed with high carbon fixation. In addition, the largest changes was observed in SAL with the maximum BET specific surface area and pore volume of $2341m^2/g$ and $1.270cm^3/g$, respectively. Furthermore, the adsorption test for three kinds of organic pollutants (phenol, 2,4-Dichlorophenoxyacetic acid, and carbofuran) were conducted, and an excellent adsorption capacity more than 90 mg/g for all activated carbon was determined using 100 ppm of the standard solution. Therefore, SAL, a condensed structure, can be used not only as a nanoporous carbon material with high specific surface area but also as a biosorbent applied to a carbon filter for remediation of organic pollutants in future.

키워드

참고문헌

  1. Aksu, Z., Kabasakal, E. 2005. Adsorption characteristics of 2, 4-dichlorophenoxyacetic acid (2, 4-D) from aqueous solution on powdered activated carbon. Journal of Environmental Science and Health Part B 40(4): 545-570. https://doi.org/10.1081/PFC-200061533
  2. Angin, D. 2014. Production and characterization of activated carbon from sour cherry stones by zinc chloride. Fuel 115: 804-811. https://doi.org/10.1016/j.fuel.2013.04.060
  3. Arseneau, D.F. 1971. Competitive reactions in the thermal decomposition of cellulose. Canadian Journal of Chemistry 49(4): 632-638. https://doi.org/10.1139/v71-101
  4. Choy, K.K., Barford, J.P., McKay, G. 2005. Production of activated carbon from bamboo scaffolding waste-process design, evaluation and sensitivity analysis. Chemical Engineering Journal 109(1): 147-165. https://doi.org/10.1016/j.cej.2005.02.030
  5. Cruz, G., Pirilä, M., Huuhtanen, M., Carrión, L., Alvarenga, E., Keiski, R. 2012. Production of activated carbon from cocoa (Theobroma cacao) pod husk. Journal of Civil and Environmental Engineering 2(2): 1-6.
  6. Fierro, V., Torne-Fernandez, V., Celzard, A. 2007. Methodical study of the chemical activation of Kraft lignin with KOH and NaOH. Microporous and Mesoporous Materials 101(3): 419-431. https://doi.org/10.1016/j.micromeso.2006.12.004
  7. Foo, K., Hameed, B. 2012. Factors affecting the carbon yield and adsorption capability of the mangosteen peel activated carbon prepared by microwave assisted $K_2CO_3$ activation. Chemical Engineering Journal 180: 66-74. https://doi.org/10.1016/j.cej.2011.11.002
  8. Gonzalez, J., Roman, S., Encinar, J., Martinez, G. 2009. Pyrolysis of various biomass residues and char utilization for the production of activated carbons. Journal of Analytical and Applied Pyrolysis 85(1): 134-141. https://doi.org/10.1016/j.jaap.2008.11.035
  9. Grand View Research 2016. Activated Carbon Market Analysis By Product (Powdered Activated Carbon (PAC), Granular Activated Carbon (GAC)), By Application (Liquid Phase, Gas Phase), By End-Use (Water Treatment, Food & Beverages, Pharmaceutical & Medical, Automotive, Air Purification) And Segment Forecasts To 2024.
  10. Hidajat, M.J., Riaz, A., Park, J., Insyani, R., Verma, D., Kim, J. 2017. Depolymerization of concentrated sulfuric acid hydrolysis lignin to high-yield aromatic monomers in basic sub-and supercritical fluids. Chemical Engineering Journal 317: 9-19. https://doi.org/10.1016/j.cej.2017.02.045
  11. Hwang, H., Sahin, O., Choi, J.W. 2017. Manufacturing a super-active carbon using fast pyrolysis char from biomass and correlation study on structural features and phenol adsorption. RSC Advances 7(67): 42192-42202. https://doi.org/10.1039/C7RA06910C
  12. Li, X., Hayashi, J.-I., Li, C.-Z. 2006. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel 85(12): 1700-1707. https://doi.org/10.1016/j.fuel.2006.03.008
  13. Matsushita, Y., Inomata, T., Hasegawa, T., Fukushima, K. 2009. Solubilization and functionalization of sulfuric acid lignin generated during bioethanol production from woody biomass. Bioresource technology 100(2): 1024-1026. https://doi.org/10.1016/j.biortech.2008.07.026
  14. Matsushita, Y., Inomata, T., Takagi, Y., Hasegawa, T., Fukushima, K. 2011. Conversion of sulfuric acid lignin generated during bioethanol production from lignocellulosic materials into polyesters with $\varepsilon$-caprolactone. Journal of wood science 57(3): 214-218. https://doi.org/10.1007/s10086-010-1158-6
  15. Nair, K., Kumar, R., Thomas, S., Schit, S., Ramamurthy, K. 2000. Rheological behavior of short sisal fiber-reinforced polystyrene composites. Composites Part A: Applied Science and Manufacturing 31(11): 1231-1240. https://doi.org/10.1016/S1359-835X(00)00083-X
  16. Njoku, V., Hameed, B. 2011. Preparation and characterization of activated carbon from corncob by chemical activation with $H_3PO_4$ for 2, 4-dichlorophenoxyacetic acid adsorption. Chemical engineering journal 173(2): 391-399. https://doi.org/10.1016/j.cej.2011.07.075
  17. Ozdemir, I., Sahin, M., Orhan, R., Erdem, M. 2014. Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Processing Technology 125: 200-206. https://doi.org/10.1016/j.fuproc.2014.04.002
  18. Qureshi, K., Bhatti, I., Kazi, R., Ansari, A.K. 2008. Physical and chemical analysis of activated carbon prepared from sugarcane bagasse and use for sugar decolorisation. International Journal of Chemical and Biomolecular Engineering 1(3): 145-149.
  19. Riaz, A., Kim, C.S., Kim, Y., Kim, J. 2016. High-yield and high-calorific bio-oil production from concentrated sulfuric acid hydrolysis lignin in supercritical ethanol. Fuel 172: 238-247. https://doi.org/10.1016/j.fuel.2015.12.051
  20. Romanos, J., Beckner, M., Rash, T., Firlej, L., Kuchta, B., Yu, P., Suppes, G., Wexler, C., Pfeifer, P. 2011. Nanospace engineering of KOH activated carbon. Nanotechnology 23(1): 015401. https://doi.org/10.1088/0957-4484/23/1/015401
  21. Salman, J., Hameed, B. 2010. Adsorption of 2, 4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon. Desalination 256(1): 129-135. https://doi.org/10.1016/j.desal.2010.02.002
  22. Shimodaira, N., Masui, A. 2002. Raman spectroscopic investigations of activated carbon materials. Journal of Applied Physics 92(2): 902-909. https://doi.org/10.1063/1.1487434
  23. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. 2008. Determination of ash in biomass. Laboratory Analytical Procedure (LAP). NREL, Golden, CO.
  24. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. 2010. Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP). Golden, CO: National Renewable Energy Laboratory; 2008 April. NREL Report No. Contract No.: DE-AC36-99-G010337. Sponsored by the US Department of Energy.
  25. Wang, X., Huang, S., Zhu, L., Tian, X., Li, S., Tang, H. 2014. Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds. Carbon 69: 101-112. https://doi.org/10.1016/j.carbon.2013.11.070
  26. Wang, Y., Alsmeyer, D.C., McCreery, R.L. 1990. Raman spectroscopy of carbon materials: structural basis of observed spectra. Chemistry of Materials 2(5): 557-563. https://doi.org/10.1021/cm00011a018
  27. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12): 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013
  28. Yasuda, S. 1981. Chemical structure of sulfuric acid lignin IV. Reaction of arylglycerol-${\beta}$-aryl ether with seventy-two percent sulfuric acid. Mokuzai Gakkaishi 27: 879-884.