DOI QR코드

DOI QR Code

Genetic Analysis Strategies for Improving Race Performance of Thoroughbred Racehorse and Jeju Horse

서러브레드 경주마와 제주마의 경주 능력 향상을 위한 유전체 분석 전략

  • Baek, Kyung-Wan (Division of Sport Science, Pusan National University) ;
  • Gim, Jeong-An (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Park, Jung-Jun (Division of Sport Science, Pusan National University)
  • 백경완 (부산대학교 스포츠과학부) ;
  • 김정안 (부산대학교 자연과학대학 생명과학과) ;
  • 박정준 (부산대학교 스포츠과학부)
  • Received : 2017.12.08
  • Accepted : 2018.01.25
  • Published : 2018.01.30

Abstract

In ancient times, horse racing was done in ancient European countries in the form of wagon races or mountain races, and wagon racing was adopted as a regular event at the Greek Olympic Games. Thoroughbred horse has been bred since 17th century by intensive selective breeding for its speed, stamina, and racing ability. Then, in the 18th century, horse racing using the Thoroughbred species began to gain popularity among nobles. Since then, horse racing has developed into various forms in various countries and have developed into flat racing, steeplechasing, and harness racing. Thoroughbred racehorse has excellent racing abilities because of powerful selection breeding strategy for 300 years. It is necessary to maintain and maximize horses' ability to race, because horse industries produce enormous economic benefits through breeding, training, and horse racing. Next-generation sequencing (NGS) methods which process large amounts of genomic data have been developed recently. Based on the remarkable development of these genomic analytical techniques, it is now possible to easily carry out animal breeding strategies with superior traits. In order to select breeding racehorse with superior racing traits, the latest genomic analysis techniques have to be introduced. In this paper, we will review the current efforts to improve race performance for racehorses and to examine the research trends of genomic analysis. Finally, we suggest to utilize genomic analysis in Thoroughbred racehorse and Jeju horse, and propose a strategy for selective breeding for Jeju horse, which contributes job creation of Korea.

말을 활용한 경주는 고대 유럽의 여러 국가들에서 마차 경주 혹은 산악 경주 등의 형태로 이루어졌으며, 고대 그리스 올림픽에서 마차 경주가 정식 종목으로 채택되었다. 서러브레드종은 17세기부터 속도, 체력, 그리고 경주 능력을 위해 선택적으로 교배되었다. 그 결과, 18세기부터 귀족들이 향유하는 스포츠로서 서러브레드종을 활용한 경주가 시행되었다. 이후 여러 국가에서 각기 다양한 형태로 발달하여 현재 크게 평지 경주, 장애물 경주, 마차 경주 등으로 발달하였다. 서러브레드 경주마는 300여 년 동안 강력한 선발 육종 전략에 의하여 선택되어 왔기에, 현재 우수한 경주 능력을 갖추고 있다. 말산업은 번식, 조련, 경마 등을 통하여 막대한 경제적 효과를 유발하기에, 말의 경주 능력을 유지하고 극대화하는 것이 필요하다. 최근에 많은 양의 게놈 데이터를 처리하기 위해 차세대 시퀀싱(Next Generation Sequencing; NGS)이 개발되었으며, 이 분석 기술의 현저한 발전을 토대로 우수한 형질을 가진 동물 육종 전략을 쉽게 수행 할 수 있게 되었다. 따라서 뛰어난 경주 능력을 가진 경주마를 선발 육종하기 위해서는 최신 유전체 분석 기술을 활용하는 전략이 필요하다. 본 논문에서는 경주마의 경주 능력을 향상시키기 의한 유전체 분석의 현재의 노력을 알아보고, 마지막으로 경주마와 제주마에서 유전체 분석을 활용하는 전략을 제안할 것이며, 대한민국의 생명자원인 제주마의 선발 육종 전략을 제안할 것이다. 말 산업은 기술, 사회 및 경제 분야에서 인간에게 강력한 파급 효과를 주는 동물 중 하나이다. 우리는 국내 고부가가치 말의 원천적인 유전 정보를 확보하고 선발 육종 할 수 있는 체계적인 기술을 확립하여 생산, 연구 업무 등에 대한 일자리 확보에 기여할 수 있기를 기대한다.

Keywords

References

  1. Aleman, M., Riehl, J., Aldridge, B. M., Lecouteur, R. A., Stott, J. L. and Pessah, I. N. 2004. Association of a mutation in the ryanodine receptor 1 gene with equine malignant hyperthermia. Muscle Nerve 30, 356-365. https://doi.org/10.1002/mus.20084
  2. Barrey, E., Bonnamy, B., Barrey, E., Mata, X., Chaffaux, S. and Guerin, G. 2010. Muscular microRNA expressions in healthy and myopathic horses suffering from polysaccharide storage myopathy or recurrent exertional rhabdomyolysis. Equine Vet. J. 42, 303-310. https://doi.org/10.1111/j.2042-3306.2010.00267.x
  3. Bower, M. A., McGivney, B. A., Campana, M. G., Gu, J., Andersson, L. S., Barrett, E., Davis, C. R., Mikko, S., Stock, F., Voronkova, V., Bradley, D. G., Fahey, A. G., Lindgren, G., MacHugh, D. E., Sulimova, G. and Hill, E. W. 2012. The genetic origin and history of speed in the Thoroughbred racehorse. Nat Commun. 3, 643. https://doi.org/10.1038/ncomms1644
  4. Brooks, S. A. and Bailey, E. 2005. Exon skipping in the KIT gene causes a Sabino spotting pattern in horses. Mamm. Genome 16, 893-902. https://doi.org/10.1007/s00335-005-2472-y
  5. Brooks, S. A., Gabreski, N., Miller, D., Brisbin, A., Brown, H. E., Streeter, C., Mezey, J., Cook, D. and Antczak, D. F. 2010. Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavender Foal Syndrome. PLoS Genet. 6, e1000909. https://doi.org/10.1371/journal.pgen.1000909
  6. Brown, J., Ollier, W., Thomson, W., Matthews, J., Carter, S., Binns, M., Pinchbeck, G. and Clegg, P. 2006. TNF-${\alpha}$ SNP haplotype frequencies in equidae. Tissue antigens 67, 377-382. https://doi.org/10.1111/j.1399-0039.2006.00581.x
  7. Brunberg, E., Andersson, L., Cothran, G., Sandberg, K., Mikko, S. and Lindgren, G. 2006. A missense mutation in PMEL17 is associated with the Silver coat color in the horse. BMC Genet. 7, 46.
  8. Chowdhary, B. P. and Raudsepp, T. 2008. The Horse Genome Derby: racing from map to whole genome sequence. Chromosome Res. 16, 109-127. https://doi.org/10.1007/s10577-008-1204-z
  9. Chowdhary, B. P., Raudsepp, T., Honeycutt, D., Owens, E. K., Piumi, F., Guerin, G., Matise, T. C., Kata, S. R., Womack, J. E. and Skow, L. C. 2002. Construction of a 5000rad wholegenome radiation hybrid panel in the horse and generation of a comprehensive and comparative map for ECA11. Mamm. Genome 13, 89-94. https://doi.org/10.1007/s00335-001-2089-8
  10. Consortium, T. C. e. S. 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 2012-2018.
  11. Cucchi, T., Mohaseb, A., Peigne, S., Debue, K., Orlando, L. and Mashkour, M. 2017. Detecting taxonomic and phylogenetic signals in equid cheek teeth: towards new palaeontological and archaeological proxies. Royal Soc. Open Sci. 4, 160997. https://doi.org/10.1098/rsos.160997
  12. Cunningham, E., Dooley, J., Splan, R. and Bradley, D. 2001. Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to thoroughbred horses. Anim. Genet. 32, 360-364. https://doi.org/10.1046/j.1365-2052.2001.00785.x
  13. Do, K. T., Kong, H. S., Lee, J. H., Lee, H. K., Cho, B. W., Kim, H. S., Ahn, K. and Park, K. D. 2014. Genomic characterization of the Przewalski's horse inhabiting Mongolian steppe by whole genome re-sequencing. Livest. Sci. 167, 86-91. https://doi.org/10.1016/j.livsci.2014.06.020
  14. Garcia-Etxebarria, K. and Jugo, B. M. 2012. Detection and characterization of endogenous retroviruses in the horse genome by in silico analysis. Virology 434, 59-67. https://doi.org/10.1016/j.virol.2012.08.047
  15. Gim, J. A. and Kim, H. S. 2014. Development of an Economic-trait Genetic Marker by Applying Next-generation Sequencing Technologies in a Whole Genome. J. Life Sci. 24, 1258-1267. https://doi.org/10.5352/JLS.2014.24.11.1258
  16. Gim, J. A., Lee, S., Kim, D. S., Jeong, K. S., Hong, C. P., Bae, J. H., Moon, J. W., Choi, Y. S., Cho, B. W. and Cho, H. G. 2015. HEpD: A database describing epigenetic differences between Thoroughbred and Jeju horses. Gene 560, 83-88. https://doi.org/10.1016/j.gene.2015.01.047
  17. Gim, J.-A., Lee, S., Kim, D.-S., Jeong, K.-S., Hong, C. P., Bae, J.-H., Moon, J.-W., Choi, Y.-S., Cho, B.-W. and Cho, H.-G. 2015. HExDB: a database for epigenetic changes occurring after horse exercise. Genes Genom. 37, 287-294. https://doi.org/10.1007/s13258-014-0251-4
  18. Gim, J. A., Ayarpadikannan, S., Eo, J., Kwon, Y. J., Choi, Y., Lee, H. K., Park, K. D., Yang, Y. M., Cho, B. W. and Kim, H. S. 2014. Transcriptional expression changes of glucose metabolism genes after exercise in thoroughbred horses. Gene 547, 152-158. https://doi.org/10.1016/j.gene.2014.06.051
  19. Gim, J. A., Hong, C. P., Kim, D. S., Moon, J. W., Choi, Y., Eo, J., Kwon, Y. J., Lee, J. R., Jung, Y. D., Bae, J. H., Choi, B. H., Ko, J., Song, S., Ahn, K., Ha, H. S., Yang, Y. M., Lee, H. K., Park, K. D., Do, K. T., Han, K., Yi, J. M., Cha, H. J., Ayarpadikannan, S., Cho, B. W., Bhak, J. and Kim, H. S. 2015. Genome-wide analysis of DNA methylation before- and after exercise in the thoroughbred horse with MeDIP-Seq. Mol. Cells 38, 210-220. https://doi.org/10.14348/molcells.2015.2138
  20. Gim, J. A. and Kim, H. S. 2017. Identification and Expression Analyses of Equine Endogenous Retroviruses in Horses. Mol. Cells 40, 796-804.
  21. Goffeau, A., Barrell, B., Bussey, H., Davis, R., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J., Jacq, C. and Johnston, M. 1996. Life with 6000 genes. Science 274, 546-567. https://doi.org/10.1126/science.274.5287.546
  22. Gordon, J. 2001. The Horse Industry. Contributing to the Australian Economy. Canberra: Rural Industries Research and Development Corporation 1-58.
  23. Gu, J., MacHugh, D., McGivney, B., Park, S., Katz, L. and Hill, E. 2010. Association of sequence variants in CKM (creatine kinase, muscle) and COX4I2 (cytochrome c oxidase, subunit 4, isoform 2) genes with racing performance in Thoroughbred horses. Equine Vet. J. 42, 569-575. https://doi.org/10.1111/j.2042-3306.2010.00181.x
  24. Hansen, M., Knorr, C., Hall, A., Broad, T. and Brenig, B. 2007. Sequence analysis of the equine SLC26A2 gene locus on chromosome 14q15$\rightarrow$ q21. Cytogenet. Genome Res. 118, 55-62. https://doi.org/10.1159/000106441
  25. Hill, E., Bradley, D., Al-Barody, M., Ertugrul, O., Splan, R., Zakharov, I. and Cunningham, E. 2002. History and integrity of thoroughbred dam lines revealed in equine mtDNA variation. Anim. Genet. 33, 287-294. https://doi.org/10.1046/j.1365-2052.2002.00870.x
  26. Hill, E., Gu, J., McGivney, B. and MacHugh, D. 2010. Targets of selection in the Thoroughbred genome contain exerciserelevant gene SNPs associated with elite racecourse performance. Anim. Genet. 41, 56-63. https://doi.org/10.1111/j.1365-2052.2010.02104.x
  27. Hill, E. W., Gu, J., Eivers, S. S., Fonseca, R. G., McGivney, B. A., Govindarajan, P., Orr, N., Katz, L. M. and MacHugh, D. 2010. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS One 5, e8645. https://doi.org/10.1371/journal.pone.0008645
  28. Hill, E. W., McGivney, B. A., Gu, J., Whiston, R. and MacHugh, D. E. 2010. A genome-wide SNP-association study confirms a sequence variant (g. 66493737C> T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genomics 11, 552. https://doi.org/10.1186/1471-2164-11-552
  29. Ishida, N., Oyunsuren, T., Mashima, S., Mukoyama, H. and Saitou, N. 1995. Mitochondrial DNA sequences of various species of the genus Equus with special reference to the phylogenetic relationship between Przewalskii's wild horse and domestic horse. J. Mol. Evol. 41, 180-188.
  30. Jost, U., Klukowska-Rotzler, J., Dolf, G., Swinburne, J., Ramseyer, A., Bugno, M., Burger, D., Blott, S. and Gerber, V. 2007. A region on equine chromosome 13 is linked to recurrent airway obstruction in horses. Equine Vet. J. 39, 236-241. https://doi.org/10.2746/042516407X171110
  31. Jurkat-Rott, K. and Lehmann-Horn, F. 2007. Genotype-phenotype correlation and therapeutic rationale in hyperkalemic periodic paralysis. Neurotherapeutics 4, 216-224. https://doi.org/10.1016/j.nurt.2007.02.001
  32. Kim, H., Lee, T., Park, W., Lee, J. W., Kim, J., Lee, B. Y., Ahn, H., Moon, S., Cho, S., Do, K. T., Kim, H. S., Lee, H. K., Lee, C. K., Kong, H. S., Yang, Y. M., Park, J., Kim, H. M., Kim, B. C., Hwang, S., Bhak, J., Burt, D., Park, K. D., Cho, B. W. and Kim, H. 2013. Peeling back the evolutionary layers of molecular mechanisms responsive to exercisestress in the skeletal muscle of the racing horse. DNA Res. 20, 287-298. https://doi.org/10.1093/dnares/dst010
  33. Kim, M. C., Lee, S. W., Ryu, D. Y., Cui, F. J., Bhak, J. and Kim, Y. 2014. Identification and characterization of microRNAs in normal equine tissues by next generation sequencing. PLoS One 9, e93662. https://doi.org/10.1371/journal.pone.0093662
  34. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M. and FitzHugh, W. 2001. Initial sequencing and analysis of the human genome. Nature 409, 860-921. https://doi.org/10.1038/35057062
  35. Lau, A. N., Peng, L., Goto, H., Chemnick, L., Ryder, O. A. and Makova, K. D. 2009. Horse domestication and conservation genetics of Przewalski's horse inferred from sex chromosomal and autosomal sequences. Mol. Biol. Evol. 26, 199-208. https://doi.org/10.1093/molbev/msn239
  36. Lee, J.-R., Hong, C. P., Moon, J.-W., Jung, Y.-D., Kim, D.-S., Kim, T.-H., Gim, J.-A., Bae, J.-H., Choi, Y. and Eo, J. 2014. Genome-wide analysis of DNA methylation patterns in horse. BMC Genomics 15, 598. https://doi.org/10.1186/1471-2164-15-598
  37. MacFadden, B. J., Bryant, J. D. and Mueller, P. A. 1991. Sr-isotopic, paleomagnetic, and biostratigraphic calibration of horse evolution: evidence from the Miocene of Florida. Geology 19, 242-245. https://doi.org/10.1130/0091-7613(1991)019<0242:SIPABC>2.3.CO;2
  38. Mach, N., Plancade, S., Pacholewska, A., Lecardonnel, J., Riviere, J., Moroldo, M., Vaiman, A., Morgenthaler, C., Beinat, M., Nevot, A., Robert, C. and Barrey, E. 2016. Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in the horse. Sci. Rep. 6, 22932. https://doi.org/10.1038/srep22932
  39. Mach, N., Ramayo-Caldas, Y., Clark, A., Moroldo, M., Robert, C., Barrey, E., Lopez, J. M. and Le Moyec, L. 2017. Understanding the response to endurance exercise using a systems biology approach: combining blood metabolomics, transcriptomics and miRNomics in horses. BMC Genomics 18, 187. https://doi.org/10.1186/s12864-017-3571-3
  40. Marklund, L., Moller, M. J., Sandberg, K. and Andersson, L. 1996. A missense mutation in the gene for melanocytestimulating hormone receptor (MCIR) is associated with the chestnut coat color in horses. Mamm. Genome 7, 895-899. https://doi.org/10.1007/s003359900264
  41. MARTI, E. and Binns, M. 1998. Horse genome mapping: a new era in horse genetics? Equine Vet. J. 30, 13-17. https://doi.org/10.1111/j.2042-3306.1998.tb04083.x
  42. McCue, M. E., Bannasch, D. L., Petersen, J. L., Gurr, J., Bailey, E., Binns, M. M., Distl, O., Guerin, G., Hasegawa, T. and Hill, E. W. 2012. A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies. PLoS Genet. 8, e1002451. https://doi.org/10.1371/journal.pgen.1002451
  43. McCue, M. E., Valberg, S. J., Miller, M. B., Wade, C., DiMauro, S., Akman, H. O. and Mickelson, J. R. 2008. Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis. Genomics 91, 458-466. https://doi.org/10.1016/j.ygeno.2008.01.011
  44. Nam, D. Y. 1969. Horse production in Cheju during Lee dynasty. Korea Hist. Res. Soc. 4, 77-131.
  45. Orlando, L., Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A., Stiller, M., Schubert, M., Cappellini, E., Petersen, B. and Moltke, I. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74-78. https://doi.org/10.1038/nature12323
  46. Park, K. D., Park, J., Ko, J., Kim, B. C., Kim, H. S., Ahn, K., Do, K. T., Choi, H., Kim, H. M., Song, S., Lee, S., Jho, S., Kong, H. S., Yang, Y. M., Jhun, B. H., Kim, C., Kim, T. H., Hwang, S., Bhak, J., Lee, H. K. and Cho, B. W. 2012. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genomics 13, 473. https://doi.org/10.1186/1471-2164-13-473
  47. Penedo, M., Millon, L., Bernoco, D., Bailey, E., Binns, M., Cholewinski, G., Ellis, N., Flynn, J., Gralak, B. and Guthrie, A. 2005. International Equine Gene Mapping Workshop Report: a comprehensive linkage map constructed with data from new markers and by merging four mapping resources. Cytogenet. Genome Res. 111, 5-15. https://doi.org/10.1159/000085664
  48. Petersen, J. L., Mickelson, J. R., Cothran, E. G., Andersson, L. S., Axelsson, J., Bailey, E., Bannasch, D., Binns, M. M., Borges, A. S. and Brama, P. 2013. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS One 8, 54997. https://doi.org/10.1371/journal.pone.0054997
  49. Reissmann, M., Bierwolf, J. and Brockmann, G. 2007. Two SNPs in the SILV gene are associated with silver coat colour in ponies. Anim. Genet. 38, 1-6. https://doi.org/10.1111/j.1365-2052.2006.01553.x
  50. Rieder, S., Taourit, S., Mariat, D., Langlois, B. and Guerin, G. 2001. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mamm. Genome 12, 450-455. https://doi.org/10.1007/s003350020017
  51. Santschi, E. M., Purdy, A. K., Valberg, S. J., Vrotsos, P. D., Kaese, H. and Mickelson, J. R. 1998. Endothelin receptor B polymorphism associated with lethal white foal syndrome in horses. Mamm. Genome 9, 306-309. https://doi.org/10.1007/s003359900754
  52. Schnider, D., Rieder, S., Leeb, T., Gerber, V. and Neuditschko, M. 2017. A genome-wide association study for equine recurrent airway obstruction in European Warmblood horses reveals a suggestive new quantitative trait locus on chromosome 13. Anim. Genet. 48, 691-693. https://doi.org/10.1111/age.12583
  53. Shrestha, M., Eriksson, S., Schurink, A., Andersson, L. S., Sundquist, M., Frey, R., Brostrom, H., Bergstrom, T., Ducro, B. and Lindgren, G. 2015. Genome-wide association study of insect bite hypersensitivity in Swedish-born Icelandic horses. J. Hered. 106, 366-374. https://doi.org/10.1093/jhered/esv033
  54. Soana, S., Gnudi, G. and Bertoni, G. 1999. The Teeth of the Horse: Evolution and Anatomo-Morphological and Radiographic Study of Their Development in the Foetus. Anat. Histol. Embryol. 28, 273-280. https://doi.org/10.1046/j.1439-0264.1999.00204.x
  55. Solberg, O., Jackson, K., Millon, L., Stott, J., Vandenplas, M., Moore, J. and Watson, J. 2004. Genomic characterization of equine Interleukin-4 receptor ${\alpha}$-chain (IL4R). Vet. Immunol. Immunopathol. 97, 187-194. https://doi.org/10.1016/j.vetimm.2003.09.004
  56. Spirito, F., Charlesworth, A., Linder, K., Ortonne, J. P., Baird, J. and Meneguzzi, G. 2002. Animal models for skin blistering conditions: absence of laminin 5 causes hereditary junctional mechanobullous disease in the Belgian horse. J. Invest. Dermatol. 119, 684-691. https://doi.org/10.1046/j.1523-1747.2002.01852.x
  57. Swinburne, J. E., Boursnell, M., Hill, G., Pettitt, L., Allen, T., Chowdhary, B., Hasegawa, T., Kurosawa, M., Leeb, T. and Mashima, S. 2006. Single linkage group per chromosome genetic linkage map for the horse, based on two threegeneration, full-sibling, crossbred horse reference families. Genomics 87, 1-29. https://doi.org/10.1016/j.ygeno.2005.09.001
  58. Tozaki, T., Takezaki, N., Hasegawa, T., Ishida, N., Kurosawa, M., Tomita, M., Saitou, N. and Mukoyama, H. 2003. Microsatellite variation in Japanese and Asian horses and their phylogenetic relationship using a European horse outgroup. J. Hered. 94, 374-380. https://doi.org/10.1093/jhered/esg079
  59. Trakovicka, A., Gabor, M., Miluchova, M., Minarovic, T. and Stastna, D. 2012. Analysis of the Nebulin-Related Anchoring Protein Gene (NRAP) SNP Polymorphism (C/T) in Slovak Warmblood Horse by PCR-RFLP Method. Sci. Pap. Anim. Sci. Biotechnol. 45, 265-268.
  60. Tryon, R. C., White, S. D. and Bannasch, D. L. 2007. Homozygosity mapping approach identifies a missense mutation in equine cyclophilin B (PPIB) associated with HERDA in the American Quarter Horse. Genomics 90, 93-102. https://doi.org/10.1016/j.ygeno.2007.03.009
  61. Wade, C. M., Giulotto, E., Sigurdsson, S., Zoli, M., Gnerre, S., Imsland, F., Lear, T. L., Adelson, D. L., Bailey, E., Bellone, R. R., Blocker, H., Distl, O., Edgar, R. C., Garber, M., Leeb, T., Mauceli, E., MacLeod, J. N., Penedo, M. C., Raison, J. M., Sharpe, T., Vogel, J., Andersson, L., Antczak, D. F., Biagi, T., Binns, M. M., Chowdhary, B. P., Coleman, S. J., Della Valle, G., Fryc, S., Guerin, G., Hasegawa, T., Hill, E. W., Jurka, J., Kiialainen, A., Lindgren, G., Liu, J., Magnani, E., Mickelson, J. R., Murray, J., Nergadze, S. G., Onofrio, R., Pedroni, S., Piras, M. F., Raudsepp, T., Rocchi, M., Roed, K. H., Ryder, O. A., Searle, S., Skow, L., Swinburne, J. E., Syvanen, A. C., Tozaki, T., Valberg, S. J., Vaudin, M., White, J. R., Zody, M. C., Broad Institute Genome Sequencing, P., Broad Institute Whole Genome Assembly, T., Lander, E. S. and Lindblad-Toh, K. 2009. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326, 865-867. https://doi.org/10.1126/science.1178158
  62. Ward, T. L., Valberg, S. J., Adelson, D. L., Abbey, C. A., Binns, M. M. and Mickelson, J. R. 2004. Glycogen branching enzyme (GBE1) mutation causing equine glycogen storage disease IV. Mamm. Genome 15, 570-577.
  63. Wnuk, M., Lewinska, A., Gurgul, A., Zabek, T., Potocki, L., Oklejewicz, B., Bugno-Poniewierska, M., Wegrzyn, M. and Slota, E. 2014. Changes in DNA methylation patterns and repetitive sequences in blood lymphocytes of aged horses. Age 36, 31-48. https://doi.org/10.1007/s11357-013-9541-z
  64. Young, A. E., Bower, L. P., Affolter, V. K., De Cock, H. E., Ferraro, G. L. and Bannasch, D. L. 2007. Evaluation of FOXC2 as a candidate gene for chronic progressive lymphedema in draft horses. Vet. J. 174, 397-399. https://doi.org/10.1016/j.tvjl.2006.05.023
  65. Zabek, T., Semik, E., Szmatola, T., Oklejewicz, B., Fornal, A. and Bugno-Poniewierska, M. 2016. Age-related methylation profiles of equine blood leukocytes in the RNASEL locus. J. Appl. Genet. 57, 383-388. https://doi.org/10.1007/s13353-015-0323-4
  66. Zabek, T., Semik, E., Wnuk, M., Fornal, A., Gurgul, A. and Bugno-Poniewierska, M. 2015. Epigenetic structure and the role of polymorphism in the shaping of DNA methylation patterns of equine OAS1 locus. J. Appl. Genet. 56, 231-238. https://doi.org/10.1007/s13353-014-0244-7
  67. Zhou, M., Wang, Q., Sun, J., Li, X., Xu, L., Yang, H., Shi, H., Ning, S., Chen, L. and Li, Y. 2009. In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 94, 125-131. https://doi.org/10.1016/j.ygeno.2009.04.006
  68. Zhou, M., Wang, Q., Sun, J., Li, X., Xu, L., Yang, H., Shi, H., Ning, S., Chen, L., Li, Y., He, T. and Zheng, Y. 2009. In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 94, 125-131. https://doi.org/10.1016/j.ygeno.2009.04.006