참고문헌
- Pirvutoiu, I. and Popescu, A. 2012. Research on the major trends in the romanian eggmarket. Bull. Univ. Agric. Sci. Vet. 69, 229-238.
- FAO, FAOSTAT, [WWW Document], URL http://faostat3. fao.org/browse/Q/*/E, 2016.
- Russ, W. and Meyer-Pittroff, R. 2004. Utilizing waste products from the food production and processing industries. Crit. Rev. Food Sci. Nutr. 44, 57-62. https://doi.org/10.1080/10408690490263783
- Russ, W. and Schnappinger, M. 2007. Waste related to the food industry: a challengein material loops. In: Oreopoulou, V., Russ, W. (Eds.), Utilization of by-products and treatment of waste in the food industry. pp. 1-13. Springer Science Business Media, New York, USA.
- Kim, H., Yum, B., Yoon, S., Song, K., Kim, J., Myeong, D., Chang, B. and Choe, N. 2016. Inactivation of Salmonella on eggshells by chlorine dioxide gas. Kor. J. Food Sci. Anim. Resour. 36, 100-108. https://doi.org/10.5851/kosfa.2016.36.1.100
- Quina, M. J., Soares, M. A. and Quinta-Ferreira, R. 2017. Applications of industrial eggshell as a valuable anthropogenic resource. Resour. Conserv. Recy. 123, 176-186. https://doi.org/10.1016/j.resconrec.2016.09.027
- Schaafsma, A., Pakan, I., Hofstede, G. J., Muskiet, F. A., Van Der Veer, E. and De Vries, P. J. 2000. Mineral, amino acid, and hormonal composition of chicken eggshell powder and the evaluation of its use in human nutrition. Poult. Sci. 79, 1833-1838. https://doi.org/10.1093/ps/79.12.1833
- Oliveira, D. A., Benelli, P. and Amante, E. R. 2013. A literature review on adding value to solid residues: egg shells. J. Clean. Prod. 46, 42-47. https://doi.org/10.1016/j.jclepro.2012.09.045
- Tunc, A. E. and Cufadar, Y. 2014. Effect of calcium sources and particle size on performance and eggshell quality in laying hens. Turkish JAF Sci. Tech. 3, 205-209. https://doi.org/10.24925/turjaf.v3i4.205-209.262
- Ray, S., Barman, A. K., Roy, P. K. and Singh, B. K. 2017. Chicken eggshell powder as dietary calcium source in chocolate cakes. Pharma Innovation 6, 1-4. https://doi.org/10.7897/2277-4572.06142
- Caruso, G. 2015. Use of plant products as candidate fish meal substitutes: an emerging issue in aquaculture productions. Fish Aquac. J. 6, 1-3.
- Zhou, Z., Ringo, E., Olsen, R. E. and Song, S. K. 2017. Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: A review. Aquacult. Nutr. 00, 1-22.
- Plaza-Diaz, J., Ruiz-Ojeda, F. J., Vilchez-Padial, L. M. and Gil, A. 2017. Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases. Nutrients 9, 555. https://doi.org/10.3390/nu9060555
- Lee, A. R., Niu, K. M., Kang, S. K., Han, S. G., Lee, B. J. and Kim, S. K. 2017. Antioxidant and antibacterial activities of Lactobacillus-fermented Artemisia annua L. as a potential fish feed additive. J. Life Sci. 27, 652-660.
- Hai, N. V. 2015. The use of probiotics in aquaculture. J. Appl. Microbiol. 119, 917-935. https://doi.org/10.1111/jam.12886
- Anekella, K. and Orsat, V. 2014. Shelf life stability of lactobacilli encapsulated in raspberry powder: Insights into non-dairy probiotics. Int. J. Food Sci. Nutr. 65, 411-418. https://doi.org/10.3109/09637486.2013.869793
- Saarela, M., Virkajarvi, I., Nohynek, L., Vaari, A. and Matto, J. 2006. Fibers as carriers for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and chocolatecoated breakfast cereals. Int. J. Food Microbiol. 112, 171-178. https://doi.org/10.1016/j.ijfoodmicro.2006.05.019
- A.O.A.C. 2010. Official methods of analysis of association of official chemists. 18th Ed., Washington, D.C., USA.
- Schaafsma, A., Pakan, I., Hofstede, G. J. H., Muskiet, F. A., Van Der Veer, E. and De Vries, P. J. F. 2000. Mineral, amino acid, and hormonal composition of chicken eggshell powder and the evaluation of its use in human nutrition. Poult Sci. 79, 1833-1838. https://doi.org/10.1093/ps/79.12.1833
- Lee, Y. S., Lee, Y. H., Lim, S. H., Park, G. H., Choi, S. Y., Hong, H. J. and Ko, J. A. 2013. Volatile compounds and ultrastructure of petal epidermal cells according to scent intensity in Rosa hybrida. Kor. J. Hortic. Sci. Technol. 31, 590-597.
- Andriani, Y., Safitri, R., Rochima, E. and Fakhrudin, S. D. 2017. Characterization of Bacillus subtilis and B. licheniformis potentials as probiotic bacteria in Vanamei shrimp feed (Litopenaeus vannamei Boone, 1931). Nus. Biosci. 9, 188-193.
- Mitra, A., Mukhopadhyay, P. K. and Homechaudhuri, S. 2017. Probiotic effect of Bacillus licheniformis fb11 on the digestive efficiency and growth performance in juvenile Chitala chitala (Hamilton, 1822). Proc. Zool. Soc. 2, 1-12.
- Deng, W., Dong, X. F., Tong, J. M. and Zhang, Q. 2012. The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult. Sci. 91, 575-582. https://doi.org/10.3382/ps.2010-01293
- Yang, H. L., Xia, H. Q., Ye, Y. D., Zou, W. C. and Sun, Y. Z. 2014. Probiotic Bacillus pumilus SE5 shapes the intestinal microbiota and mucosal immunity in grouper Epinephelus coioides. Dis. Aquat. Org. 111, 119-127. https://doi.org/10.3354/dao02772
- Sreenivasulu, P., Suman Joshi, D. S. D., Narendra, K., Venkata Rao, G. and Krishna Satya, A. 2016. Bacillus pumilus as a potential probiotic for shrimp culture. Int. J. Fish Aquat. Stud. 4, 107-110.
- Zokaeifar, H., Balcazar, J. L., Saad, C. R., Kamarudin, M. S., Sijam, K., Arshad, A. and Nejat, N. 2012. Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 33, 683-689. https://doi.org/10.1016/j.fsi.2012.05.027
- Zuenko, V. A., Laktionov, K. S., Pravdin, I. V., Kravtsova, L. Z. and Ushakova, N. A. 2017. Effect of Bacillus subtilis in feed probiotic on the digestion of fish cultured in cages. J. Ichthyol. 57, 152-157. https://doi.org/10.1134/S0032945217010143
- Li, W. F., Rajput, I. R., Xu, X., Li, Y. L., Lei, J., Huang, Q. and Wang, M. Q. 2011. Effects of probiotic (Bacillus subtilis) on laying performance, blood biochemical properties and intestinal microflora of Shaoxing duck. Int. J. Poult. Sci. 10, 583-589. https://doi.org/10.3923/ijps.2011.583.589
- Lee, A. R., Niu, K. M., Kang, S. K., Han, S. G., Lee, B. J. and Kim, S. K. 2017. Antioxidant and antibacterial activities of Lactobacillus-fermented Artemisia annua L. as a potential fish feed additive. J. Life Sci. 27, 652-660.
- Hamdan, A. M., El Sayed, A. F. M. and Mahmoud, M. M. 2016. Effects of a novel marine probiotic, Lactobacillus plantarum AH 78, on growth performance and immune response of Nile tilapia (Oreochromis niloticus). J. Appl. Microbiol. 120, 1061-1073. https://doi.org/10.1111/jam.13081
- Shen, X., Yi, D., Ni, X., Zeng, D., Jing, B., Lei, M. and Xin, J. 2014. Effects of Lactobacillus plantarum on production performance, immune characteristics, antioxidant status, and intestinal microflora of bursin-immunized broilers. Can. J. Microbiol. 60, 193-202. https://doi.org/10.1139/cjm-2013-0680
- Wagner, M., Abdel-Mageed, W. M., Ebel, R., Bull, A. T., Goodfellow, M., Fiedler, H. P. and Jaspars, M. 2014. Dermacozines h-j isolated from a deep-sea strain of Dermacoccus abyssi from Mariana Trench sediments. J. Nat. Prod. 77, 416-420. https://doi.org/10.1021/np400952d
- Elsayed, S. and Zhang, K. 2005. Bacteremia caused by Janibacter melonis. J. Clin. Microbiol. 43, 3537-3539. https://doi.org/10.1128/JCM.43.7.3537-3539.2005
- Cameron, D. R., Jiang, J. H., Hassan, K. A., Elbourne, L. D., Tuck, K. L., Paulsen, I. T. and Peleg, A. Y. 2015. Insights on virulence from the complete genome of Staphylococcus capitis. Front. Microbiol. 6, 981-992.
- Chaemsanit, S., Akbar, A. and Anal, A. K. 2015. Isolation of total aerobic and pathogenic bacteria from table eggs and its contents. Food Appl. Biosci. J. 3, 1-9.
- Mukherjee, R., Chakraborty, R. and Dutta, A. 2016. Role of fermentation in improving nutritional quality of soybean meal-a review. Asian-Australas J. Anim. Sci. 29, 1523.
- Hincke, M. T., Nys, Y., Gautron, J., Mann, K., Rodriguez- Navarro, A. B. and McKee, M. D. 2012. The eggshell: structure, composition and mineralization. Front Biosci. 17, 1266- 1280. https://doi.org/10.2741/3985
- Quintana, G., Gerbino, E. and Gomez-Zavaglia, A. 2017. Okara: A nutritionally valuable by-product able to stabilize Lactobacillus plantarum during freeze-drying, spray-drying, and storage. Front. Microbiol. 8, 641-650.
- Jagannath, A., Raju, P. S. and Bawa, A. S. 2010. Comparative evaluation of bacterial cellulose (nata) as a cryoprotectant and carrier support during the freeze drying process of probiotic lactic acid bacteria. LWT-Food Sci. Technol. 43, 1197- 1203. https://doi.org/10.1016/j.lwt.2010.03.009
- Sadiq, F. A., Li, Y., Liu, T., Flint, S., Zhang, G., Yuan, L. and He, G. 2016. The heat resistance and spoilage potential of aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders. Int. J. Food Microbiol. 238, 193-201. https://doi.org/10.1016/j.ijfoodmicro.2016.09.009
- Cho, J. H., Kim, Y. B., and Kim, E. K. 2009. Optimization of culture media for Bacillus species by statistical experimental design methods. Kor. J. Chem. Eng. 26, 754-759. https://doi.org/10.1007/s11814-009-0126-6
- Baptista, A. S., Horii, J. and Piedade, S. M. D. S. 2005. Cells of yeasts adhered in corn grains and the storage perspective for use as probiotic. Braz. Arch. Biol. Technol. 48, 251-257. https://doi.org/10.1590/S1516-89132005000200012