DOI QR코드

DOI QR Code

Fortified Antioxidative Potential by Chrysoeriol through the Regulation of the Nrf2/MAPK-mediated HO-1 Signaling Pathway in RAW 264.7 Cells

생쥐 대식세포에서 HO-1 발현 유도를 통한 chrysoeriol의 항산화 효과

  • Park, Chung Mu (Department of Clinical Laboratory Science, Dong-Eui University)
  • 박충무 (동의대학교 임상병리학과)
  • Received : 2017.10.17
  • Accepted : 2017.12.27
  • Published : 2018.01.30

Abstract

Chrysoeriol is a widespread flavone, and it is usually found in alfalfa, which has been used as a traditional medicine to treat dyspepsia, asthma, and urinary system disorders. Recently, analysis has been conducted on the anti-inflammatory activity of chrysoeriol, but information on its antioxidative capacity is limited. In this study, the antioxidative potential of chrysoeriol against oxidative damage and its molecular mechanisms were evaluated by analysis of the cell viability, reactive oxygen species (ROS) formation, and Western blots in the RAW 264.7 cell line. Chrysoeriol significantly scavenged lipopolysaccharide (LPS)-induced intracellular ROS formation in a dose-dependent manner, without any cytotoxicity. Heme oxygenase-1 (HO-1), a phase II enzyme that exerts antioxidative activity, was also potently induced by chrysoeriol treatment, which corresponded to the translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) into the nucleus. Moreover, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) were analyzed due to their important role in maintaining cellular redox homeostasis against oxidative stress. As a result, chrysoeriol-induced HO-1 upregulation was mediated by extracellular signal - regulated kinase (ERK), c-Jun $NH_2$-terminal kinase (JNK), and p38 phosphorylation. To identify the antioxidative potential exerted by HO-1, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was applied and mitigated by chrysoeriol treatment, which was confirmed by the HO-1 selective inhibitor and inducer, respectively. Consequently, chrysoeriol strongly strengthened the HO-1-mediated antioxidative potential through the regulation of the Nrf2/MAPK signaling pathways.

Chrysoeriol은 alfalfa에서 주로 발견되는, 식물계에 많이 분포하고 있는 flavone으로 전통의학에서 소화불량, 천식, 비뇨기계 이상의 치료에 사용되어 왔다. 최근의 연구에서는 항염증 효과가 있는 것으로 밝혀졌으나 항산화 효과에 대한 분석은 없었다. 본 연구에서는 chrysoeriol의 항산화 효과와 그 분자적 기전을 RAW 264.7 cell에서 세포생존율, reactive oxygen species (ROS)와 Western blot분석을 통해 알아보고자 하였다. Chrysoeriol은 lipopolysaccharide(LPS)에 의해 발생한 ROS를 세포독성없이 농도의존적으로 제거하였다. 그리고 항산화효과를 보이는 2상 효소 중 하나인 heme oxygenase (HO)-1의 발현을 강하게 유도하였고, 그와 동시에 전사인자인 Nrf2의 핵내 이동도 촉진하는 것으로 밝혀졌다. 특히, 산화스트레스에 대한 세포내 산화환원항상성 유지에 중요한 역할을 하고 있는 것으로 알려진 mitogen activated protein kinase (MAPK)와 phosphoinositide 3-kinase (PI3K)의 분석결과, chrysoeriol은 extracellular signal regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK)와 p38의 인산화를 통해 HO-1의 발현을 유도하는 것으로 나타났다. HO-1에 의한 항산화 효과를 확인하기 위하여 chrysoeriol을 전처리한 후 t-BHP에 의한 산화 스트레스에 세포를 노출시킨 결과, chrysoeriol 처리에 의해 세포사멸이 줄어드는 것을 확인하였고, HO-1의 유도제와 억제제의 처리에 따라 세포생존율 또한 조절되는 것을 확인할 수 있었다. 따라서, chrysoeriol은 HO-1의 발현을 유도하여 항산화 효과를 높이고 이것은 Nrf2/MAPK 신호전달 체계에 의한다는 것을 알 수 있었다.

Keywords

References

  1. Alam, M. B., Kwon, K. R. and Lee, S. H. 2017. Lannea coromandelica (Houtt.) Merr. induces heme oxygenase 1 (HO-1) expression and reduces oxidative stress via the p38/c-Jun N-terminal kinase-nuclear factor erythroid 2-related factor 2 (p38/JNK-NRF2)-mediated antioxidant pathway. Int. J. Mol. Sci. 18, 226. https://doi.org/10.3390/ijms18010226
  2. Baranano, D. E., Rao, M., Ferris, C. D. and Snyder, S. H. 2002. Biliverdin reductase: a major physiologic cytoprotectant. Proc. Natl. Acad. Sci. USA. 99, 16093-16098. https://doi.org/10.1073/pnas.252626999
  3. Bussolati, B., Ahmed, A., Pemberton, H., Landis, R. C., Di Carlo, F., Haskard, D. O. and Mason, J. C. 2004. Bifunctional role for VEGF-induced heme oxygenase-1 in vivo: induction of angiogenesis and inhibition of leukocytic infiltration. Blood 103, 761-766.
  4. Cha, B. Y., Shi, W. L., Yonezawa, T., Teruya, T., Nagai, K. and Woo, J. T. 2009. An inhibitory effect of chrysoeriol on platelet-derived growth factor (PDGF)-induced proliferation and PDGF receptor signaling in human aortic smooth muscle cells. J. Pharmacol. Sci. 110, 105-110. https://doi.org/10.1254/jphs.08282FP
  5. Chow, J. M., Shen, S. C., Huan, S. K., Lin, H. Y. and Chen, Y. C. 2005. Quercetin, but not rutin and quercitrin, prevention of $H_2O_2$-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem. Pharmacol. 69, 1839-1851. https://doi.org/10.1016/j.bcp.2005.03.017
  6. Eisenstein, R. S., Garcia-Mayol, D., Pettingell, W. and Munro, H. N. 1991. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. Proc. Natl. Acad. Sci. USA. 88, 688-692. https://doi.org/10.1073/pnas.88.3.688
  7. Farombi, E. O. and Surh, Y. J. 2006. Heme oxygenase-1 as a potential therapeutic target for hepatoprotection. J. Biochem. Mol. Biol. 39, 479-491.
  8. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322. https://doi.org/10.1006/bbrc.1997.6943
  9. Johnson, G. L. and Lapadat, R. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912. https://doi.org/10.1126/science.1072682
  10. Jeong, Y. H., Park, J. S., Kim, D. H. and Kim, H. S. 2016. Lonchocarpine increases Nrf2/ARE-mediated antioxidant enzyme expression by modulating AMPK and MAPK signaling in brain astrocytes. Biomol. Ther. 24, 581-588. https://doi.org/10.4062/biomolther.2016.141
  11. Keum, Y. S. 2012. Regulation of Nrf2-mediated phase II detoxification and anti-oxidant genes. Biomol. Ther. 20, 144-151. https://doi.org/10.4062/biomolther.2012.20.2.144
  12. Kim, J., Cha, Y. N. and Surh, Y. J. 2010. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. 690, 12-23. https://doi.org/10.1016/j.mrfmmm.2009.09.007
  13. Kwon, E. J., Park, H. J., Nam, H., Lee, S. G., Hong, S., Kim, M. M., Lee, K. R., Hong, I., Lee, D. G. and Oh, Y. 2014. Whitening and antioxidant effects of a mixture of Poria cocas, Glycyrrhiza uralensis, and Ulmus macrocarpa extracts. J. Life Sci. 24, 1063-1069. https://doi.org/10.5352/JLS.2014.24.10.1063
  14. Lee, J. S. and Surh, Y. J. 2005. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 224, 171-184. https://doi.org/10.1016/j.canlet.2004.09.042
  15. Ma, Q. 2013. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 53, 401-426. https://doi.org/10.1146/annurev-pharmtox-011112-140320
  16. Martin, D., Rojo, A. I., Salinas, M., Diaz, R., Gallardo, G., Alam, J., De Galarreta, C. M. and Cuadrado, A. 2004. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J. Biol. Chem. 279, 8919-8929. https://doi.org/10.1074/jbc.M309660200
  17. Pradhan, P., Giri, J., Rieken, F., Koch, C., Mykhaylyk, O., Doblinger, M., Banerjee, R., Bahadur, D. and Plank, C. 2010. Targeted temperature sensitive magnetic liposomes for thermo- chemotherapy. J. Control. Release 142, 108-121. https://doi.org/10.1016/j.jconrel.2009.10.002
  18. Shi, X. and Zhou, B. 2010. The role of Nrf2 and MAPK pathways in PFOS-induced oxidative stress in zebrafish embryos. Toxicol. Sci. 115, 391-400. https://doi.org/10.1093/toxsci/kfq066
  19. Sies, H. 1997. Oxidative stress: oxidants and antioxidants. Exp. Physiol. 82, 291-295. https://doi.org/10.1113/expphysiol.1997.sp004024
  20. Song, Y. S. and Park, C. M. 2014. Luteolin and luteolin- 7-O-glucoside strengthen antioxidative potential through the modulation of Nrf2/MAPK mediated HO-1 signaling cascade in RAW 264.7 cells. Food Chem. Toxicol. 65, 70-75. https://doi.org/10.1016/j.fct.2013.12.017
  21. Stochmal, A., Simonet, A. M., Macias, F. A. and Oleszek, W. 2001. Alfalfa (Medicago sativa L.) flavonoids. 2. Tricin and chrysoeriol glycosides from aerial parts. J. Agric. Food Chem. 49, 5310-5314. https://doi.org/10.1021/jf010600x
  22. Stocker, R., Yamamoto, Y., McDonagh, A. F., Glazer, A. N. and Ames, B. N. 1987. Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043-1046. https://doi.org/10.1126/science.3029864
  23. Vitaglione, P., Morisco, F., Caporaso, N. and Fogliano, V. 2004. Dietary antioxidant compounds and liver health. Crit. Rev. Food Sci. Nutr. 44, 575-586.
  24. Yoo, O. K., Lee, Y. G., Do, K. H. and Keum, Y. S. 2017. Ethanol extracts of Rheum undulatum and Inula japonica protect against oxidative damages on human keratinocyte HaCaT cells through the induction of ARE/NRF2-dependent phase II cytoprotective enzymes. J. Life Sci. 27, 310-317. https://doi.org/10.5352/JLS.2017.27.3.310
  25. Yoon, J. W., Kim, S. J. and Park, D. S. 2016. Anti-oxidative and anti-inflammatory effects of Cheongajihwang-Tang extract on RAW264.7 cells. J. Kor. Med. Rehabil. 26, 51-58.
  26. Yu, R., Chen, C., Mo, Y. Y., Hebbar, V., Owuor, E. D., Tan, T. H. and Kong, A. N. 2000. Activation of mitogen-activated protein kinase pathways induces antioxidant response element- mediated gene expression via a Nrf2-dependent mechanism. J. Biol. Chem. 275, 39907-39913. https://doi.org/10.1074/jbc.M004037200
  27. Wang, H. and Joseph, J. A. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27, 612-616. https://doi.org/10.1016/S0891-5849(99)00107-0