DOI QR코드

DOI QR Code

Caffeic Acid Phenethyl Ester Induces the Expression of NAG-1 via Activating Transcription Factor 3

ATF3를 통한 caffeic acid phenethyl ester에 의한 NAG-1 유전자의 발현 증가

  • Park, Min-Hee (Department of Biological Sciences, Andong National University) ;
  • Chung, Chungwook (Department of Biological Sciences, Andong National University) ;
  • Lee, Seong Ho (Department of Nutrition & Food Science, University of Maryland, College Park) ;
  • Baek, Seung Joon (College of Veterinary Medicine, Seoul National University) ;
  • Kim, Jong Sik (Department of Biological Sciences, Andong National University)
  • 박민희 (국립안동대학교 생명과학과) ;
  • 정정욱 (국립안동대학교 생명과학과) ;
  • 이성호 (미국 메릴랜드대학교 영양식품과학과) ;
  • 백승준 (서울대학교 수의과대학) ;
  • 김종식 (국립안동대학교 생명과학과)
  • Received : 2017.09.21
  • Accepted : 2017.11.24
  • Published : 2018.01.30

Abstract

Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) is a transforming growth factor beta (TGF-${\beta}$) superfamily gene associated with pro-apoptotic and anti-tumorigenic activities. In the present study, we investigated if caffeic acid phenethyl ester (CAPE) derived from propolis could induce the expression of anti-tumorigenic gene NAG-1. Our results indicate that CAPE significantly induced NAG-1 expression in a time- and concentration-dependent manner in HCT116 cells. We also found that CAPE induced NAG-1 expression in a concentration-dependent manner in another human colorectal cancer cell line, LOVO. In addition, CAPE triggered apoptosis, which was detected with Western blot analysis using poly-(ADP-ribose) polymerase antibody. NAG-1 induction by CAPE was not dependent on transcription factor p53, which was confirmed with Western blot analysis using p53 null HCT116 cells. The luciferase assay results indicated that the new cis-elements candidates were located between -474 and -1,086 of the NAG-1 gene promoter. CAPE dramatically induced activating transcription factor 3 (ATF3) expression, but not cAMP response element-binding protein (CREB), which shares the same binding sites with ATF3. The co-transfection experiment with pCG-ATF3 and pCREB showed that only ATF3 was associated with NAG-1 up-regulation by CAPE, whereas CREB had no effect. In conclusion, the results suggest that CAPE could induce the expression of anti-tumorigenic gene NAG-1 mainly through ATF3.

NAG-1 단백질은 TGF-${\beta}$ superfamily 유전자로서 암세포의 apoptosis를 유도하고 항암 활성과 관련이 있는 것으로 알려져 있다. 본 연구에서는 프로폴리스 유래의 파이토케미칼 CAPE (caffeic acid phenethyl ester)에 의한 항암유전자 NAG-1의 발현과 발현조절에 대해 연구하였다. 인간 대장암 세포주 HCT116에서 CAPE의 처리에 의해 농도의존적, 시간의존적으로 NAG-1의 발현이 증가됨을 확인하였다. 게다가, 다른 대장암 세포주인 LOVO 세포주에서도 농도의존적으로 NAG-1의 발현이 증가됨을 확인하였다. p53-null HCT116세포주를 이용한 실험에서 CAPE에 의한 NAG-1의 발현은 전사조절인자인 p53에 의존하지 않음을 증명하였다. 또한, 3가지 종류의 NAG-1 프로모터 construct를 이용한 실험에서, cis-element 후보가 -474와 -1,086사이에 있음을 증명하였다. CAPE에 의해 전사조절인자인 ATF3와 CREB의 발현이 변화되는 지를 확인한 결과, CREB은 전혀 발현이 증가되지 않는 반면 ATF3는 CAPE 처리에 의해 농도의존적으로 발현이 증가함을 확인하였다. 그리고, pCG-ATF3와 pCREB의 cotransfection 실험에서 CREB은 NAG-1의 발현에 영향을 못 미치는 반면, ATF3의 과대발현에 의해 NAG-1의 발현이 증가됨을 확인하였다. 결론적으로, CAPE에 의한 NAG-1의 발현은 주로 전사조절인자인 ATF3를 경유하여 일어남을 시사한다.

Keywords

References

  1. Annema, N., Heyworth, J. S., McNaughton, S. A., Iacopetta, B. and Fritschi, L. 2011. Fruit and vegetable consumption and the risk of proximal colon, distal colon, and rectal cancers in a case-control study in Western Australia. J. Am. Diet. Assoc. 111, 1479-1490. https://doi.org/10.1016/j.jada.2011.07.008
  2. Aykan, N. F. 2015. Red meat and colorectal cancer. Oncol. Rev. 9, 288.
  3. Azeem, S., Gillani, S. W., Siddiqui, A., Jandrajupalli, S. B., Poh, V. and Syed Sulaiman, S. A. 2015. Diet and Colorectal Cancer Risk in Asia--a Systematic Review. Asian Pac. J. Cancer Prev. 16, 5389-5396. https://doi.org/10.7314/APJCP.2015.16.13.5389
  4. Baek, S. J., Kim, J. S., Jackson, F. R., Eling, T. E., McEntee, M. F. and Lee, S. H. 2004. Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells. Carcinogenesis 25, 2425-2432. https://doi.org/10.1093/carcin/bgh255
  5. Baek, S. J., Kim, J. S., Moore, S. M., Lee, S. H., Martinez, J. and Eling, T. E. 2005. Cyclooxygenase inhibitors induce the expression of the tumor suppressor gene EGR-1, which results in the up-regulation of NAG-1, an antitumorigenic protein. Mol. Pharmacol. 67, 356-364.
  6. Baek, S. J., Kim, J. S., Nixon, J. B., DiAugustine, R. P. and Eling, T. E. 2004. Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J. Biol. Chem. 279, 6883-6892. https://doi.org/10.1074/jbc.M305295200
  7. Baek, S. J., Okazaki, R., Lee, S. H., Martinez, J., Kim, J. S., Yamaguchi, K., Mishina, Y., Martin, D. W., Shoieb, A., McEntee, M. F. and Eling, T. E. 2006. Nonsteroidal anti-inflammatory drug-activated gene-1 over expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology 131, 1553-1560. https://doi.org/10.1053/j.gastro.2006.09.015
  8. Baek, S. J., Wilson, L. C. and Eling, T. E. 2002. Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis 23, 425-434. https://doi.org/10.1093/carcin/23.3.425
  9. Bottone, F. G. Jr, Baek, S. J., Nixon, J. B. and Eling, T. E. 2002. Diallyl disulfide (DADS) induces the antitumorigenic NSAID-activated gene (NAG-1) by a p53-dependent mechanism in human colorectal HCT 116 cells. J. Nutr. 132, 773-778. https://doi.org/10.1093/jn/132.4.773
  10. Buhrmann, C., Shayan, P., Popper, B., Goel, A. and Shakibaei, M. 2016. Sirt1 Is Required for Resveratrol-Mediated Chemopreventive Effects in Colorectal Cancer Cells. Nutrients 8, 145. https://doi.org/10.3390/nu8030145
  11. Carr, P. R., Holleczek, B., Stegmaier, C., Brenner, H. and Hoffmeister, M. 2017. Meat intake and risk of colorectal polyps: results from a large population-based screening study in Germany. Am. J. Clin. Nutr. 105, 1453-1461.
  12. Chiang, E. P., Tsai, S. Y., Kuo, Y. H., Pai, M. H., Chiu, H. L., Rodriguez, R. L. and Tang, F. Y. 2014. Caffeic acid derivatives inhibit the growth of colon cancer: involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS One 9, e99631. https://doi.org/10.1371/journal.pone.0099631
  13. Chrysovergis, K., Wang, X., Kosak, J., Lee, S. H., Kim, J. S., Foley, J. F., Travlos, G., Singh, S., Baek, S. J. and Eling, T. E. 2014. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int. J. Obes. (Lond) 38, 1555-1564. https://doi.org/10.1038/ijo.2014.27
  14. Godos, J., Bella, F., Torrisi, A., Sciacca, S., Galvano, F. and Grosso, G. 2016. Dietary patterns and risk of colorectal adenoma: a systematic review and meta-analysis of observational studies. J. Hum. Nutr. Diet 29, 757-767. https://doi.org/10.1111/jhn.12395
  15. Kim, H., Kim, W., Yum, S., Hong, S., Oh, J. E., Lee, J. W., Kwak, M. K., Park, E. J., Na, D. H. and Jung, Y. 2013. Caffeic acid phenethyl ester activation of Nrf2 pathway is enhanced under oxidative state: structural analysis and potential as a pathologically targeted therapeutic agent in treatment of colonic inflammation. Free Radic. Biol. Med. 65, 552-562. https://doi.org/10.1016/j.freeradbiomed.2013.07.015
  16. Kim, K. J., Lee, J., Park, Y. and Lee, S. H. 2015. ATF3 mediates anti-cancer aActivity of trans-10, cis-12-conjugated linoleic acid in human colon cancer cells. Biomol. Ther. (Seoul) 23, 134-140. https://doi.org/10.4062/biomolther.2014.107
  17. Lee, S. H., Krisanapun, C. and Baek, S. J. 2010. NSAID-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3beta, C/EBPbeta and ATF3. Carcinogenesis 31, 719-728. https://doi.org/10.1093/carcin/bgq016
  18. Li, L., Sun, W., Wu, T., Lu, R. and Shi, B. 2017. Caffeic acid phenethyl ester attenuates lipopolysaccharide-stimulated proinflammatory responses in human gingival fibroblasts via NF-${\kappa}B$ and PI3K/Akt signaling pathway. Eur. J. Pharmacol. 794, 61-68. https://doi.org/10.1016/j.ejphar.2016.11.003
  19. Luo, W. P., Fang, Y. J., Lu, M. S., Zhong, X., Chen, Y. M. and Zhang, C. X. 2015. High consumption of vegetable and fruit colour groups is inversely associated with the risk of colorectal cancer: a case-control study. Br. J. Nutr. 113, 1129- 1138. https://doi.org/10.1017/S0007114515000331
  20. Maru, G. B., Hudlikar, R. R., Kumar, G., Gandhi, K. and Mahimkar, M. B. 2016. Understanding the molecular mechanisms of cancer prevention by dietary phytochemicals: From experimental models to clinical trials. World J. Biol. Chem. 7, 88-99. https://doi.org/10.4331/wjbc.v7.i1.88
  21. Oh, S., Gwak, J., Park, S. and Yang, C. S. 2014. Green tea polyphenol EGCG suppresses Wnt/${\beta}$-catenin signaling by promoting GSK-$3{\beta}$- and PP2A-independent ${\beta}$-catenin phosphorylation/ degradation. Biofactors 40, 586-595. https://doi.org/10.1002/biof.1185
  22. Piyanuch, R., Sukhthankar, M., Wandee, G. and Baek, S. J. 2007. Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells. Cancer Lett. 258, 230-240. https://doi.org/10.1016/j.canlet.2007.09.007
  23. Siegel, R. L., Miller, K. D. and Jemal, A. 2016. Cancer statistics, 2016. CA Cancer J. Clin. 66, 7-30. https://doi.org/10.3322/caac.21332
  24. Soldani, C. and Scovassi, A. I. 2002. Poly (ADP-ribose) polymerase- 1 cleavage during apoptosis: an update. Apoptosis 7, 321-328. https://doi.org/10.1023/A:1016119328968
  25. Tong, W., Wang, Q., Sun, D. and Suo, J. 2016. Curcumin suppresses colon cancer cell invasion via AMPK-induced inhibition of NF-${\kappa}B$, uPA activator and MMP9. Oncol Lett. 12, 4139-4146. https://doi.org/10.3892/ol.2016.5148
  26. Wang, D., Xiang, D. B., He, Y. J., Li, Z. P., Wu, X. H., Mou, J. H., Xiao, H. L. and Zhang, Q. H. 2005. Effect of caffeic acid phenethyl ester on proliferation and apoptosis of colorectal cancer cells in vitro. World J. Gastroenterol. 11, 4008- 4012. https://doi.org/10.3748/wjg.v11.i26.4008
  27. Wilson, L. C., Baek, S. J., Call, A. and Eling, T. E. 2003. Nonsteroidal anti-inflammatory drug-activated gene (NAG- 1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int. J. Cancer 105, 747-753. https://doi.org/10.1002/ijc.11173
  28. Xiang, D., Wang, D., He, Y., Xie, J., Zhong, Z., Li, Z. and Xie, J. 2006. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the beta-catenin/ T-cell factor signaling. Anticancer Drugs 17, 753-762. https://doi.org/10.1097/01.cad.0000224441.01082.bb