References
- Annema, N., Heyworth, J. S., McNaughton, S. A., Iacopetta, B. and Fritschi, L. 2011. Fruit and vegetable consumption and the risk of proximal colon, distal colon, and rectal cancers in a case-control study in Western Australia. J. Am. Diet. Assoc. 111, 1479-1490. https://doi.org/10.1016/j.jada.2011.07.008
- Aykan, N. F. 2015. Red meat and colorectal cancer. Oncol. Rev. 9, 288.
- Azeem, S., Gillani, S. W., Siddiqui, A., Jandrajupalli, S. B., Poh, V. and Syed Sulaiman, S. A. 2015. Diet and Colorectal Cancer Risk in Asia--a Systematic Review. Asian Pac. J. Cancer Prev. 16, 5389-5396. https://doi.org/10.7314/APJCP.2015.16.13.5389
- Baek, S. J., Kim, J. S., Jackson, F. R., Eling, T. E., McEntee, M. F. and Lee, S. H. 2004. Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells. Carcinogenesis 25, 2425-2432. https://doi.org/10.1093/carcin/bgh255
- Baek, S. J., Kim, J. S., Moore, S. M., Lee, S. H., Martinez, J. and Eling, T. E. 2005. Cyclooxygenase inhibitors induce the expression of the tumor suppressor gene EGR-1, which results in the up-regulation of NAG-1, an antitumorigenic protein. Mol. Pharmacol. 67, 356-364.
- Baek, S. J., Kim, J. S., Nixon, J. B., DiAugustine, R. P. and Eling, T. E. 2004. Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J. Biol. Chem. 279, 6883-6892. https://doi.org/10.1074/jbc.M305295200
- Baek, S. J., Okazaki, R., Lee, S. H., Martinez, J., Kim, J. S., Yamaguchi, K., Mishina, Y., Martin, D. W., Shoieb, A., McEntee, M. F. and Eling, T. E. 2006. Nonsteroidal anti-inflammatory drug-activated gene-1 over expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology 131, 1553-1560. https://doi.org/10.1053/j.gastro.2006.09.015
- Baek, S. J., Wilson, L. C. and Eling, T. E. 2002. Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis 23, 425-434. https://doi.org/10.1093/carcin/23.3.425
- Bottone, F. G. Jr, Baek, S. J., Nixon, J. B. and Eling, T. E. 2002. Diallyl disulfide (DADS) induces the antitumorigenic NSAID-activated gene (NAG-1) by a p53-dependent mechanism in human colorectal HCT 116 cells. J. Nutr. 132, 773-778. https://doi.org/10.1093/jn/132.4.773
- Buhrmann, C., Shayan, P., Popper, B., Goel, A. and Shakibaei, M. 2016. Sirt1 Is Required for Resveratrol-Mediated Chemopreventive Effects in Colorectal Cancer Cells. Nutrients 8, 145. https://doi.org/10.3390/nu8030145
- Carr, P. R., Holleczek, B., Stegmaier, C., Brenner, H. and Hoffmeister, M. 2017. Meat intake and risk of colorectal polyps: results from a large population-based screening study in Germany. Am. J. Clin. Nutr. 105, 1453-1461.
- Chiang, E. P., Tsai, S. Y., Kuo, Y. H., Pai, M. H., Chiu, H. L., Rodriguez, R. L. and Tang, F. Y. 2014. Caffeic acid derivatives inhibit the growth of colon cancer: involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS One 9, e99631. https://doi.org/10.1371/journal.pone.0099631
- Chrysovergis, K., Wang, X., Kosak, J., Lee, S. H., Kim, J. S., Foley, J. F., Travlos, G., Singh, S., Baek, S. J. and Eling, T. E. 2014. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int. J. Obes. (Lond) 38, 1555-1564. https://doi.org/10.1038/ijo.2014.27
- Godos, J., Bella, F., Torrisi, A., Sciacca, S., Galvano, F. and Grosso, G. 2016. Dietary patterns and risk of colorectal adenoma: a systematic review and meta-analysis of observational studies. J. Hum. Nutr. Diet 29, 757-767. https://doi.org/10.1111/jhn.12395
- Kim, H., Kim, W., Yum, S., Hong, S., Oh, J. E., Lee, J. W., Kwak, M. K., Park, E. J., Na, D. H. and Jung, Y. 2013. Caffeic acid phenethyl ester activation of Nrf2 pathway is enhanced under oxidative state: structural analysis and potential as a pathologically targeted therapeutic agent in treatment of colonic inflammation. Free Radic. Biol. Med. 65, 552-562. https://doi.org/10.1016/j.freeradbiomed.2013.07.015
- Kim, K. J., Lee, J., Park, Y. and Lee, S. H. 2015. ATF3 mediates anti-cancer aActivity of trans-10, cis-12-conjugated linoleic acid in human colon cancer cells. Biomol. Ther. (Seoul) 23, 134-140. https://doi.org/10.4062/biomolther.2014.107
- Lee, S. H., Krisanapun, C. and Baek, S. J. 2010. NSAID-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3beta, C/EBPbeta and ATF3. Carcinogenesis 31, 719-728. https://doi.org/10.1093/carcin/bgq016
-
Li, L., Sun, W., Wu, T., Lu, R. and Shi, B. 2017. Caffeic acid phenethyl ester attenuates lipopolysaccharide-stimulated proinflammatory responses in human gingival fibroblasts via NF-
${\kappa}B$ and PI3K/Akt signaling pathway. Eur. J. Pharmacol. 794, 61-68. https://doi.org/10.1016/j.ejphar.2016.11.003 - Luo, W. P., Fang, Y. J., Lu, M. S., Zhong, X., Chen, Y. M. and Zhang, C. X. 2015. High consumption of vegetable and fruit colour groups is inversely associated with the risk of colorectal cancer: a case-control study. Br. J. Nutr. 113, 1129- 1138. https://doi.org/10.1017/S0007114515000331
- Maru, G. B., Hudlikar, R. R., Kumar, G., Gandhi, K. and Mahimkar, M. B. 2016. Understanding the molecular mechanisms of cancer prevention by dietary phytochemicals: From experimental models to clinical trials. World J. Biol. Chem. 7, 88-99. https://doi.org/10.4331/wjbc.v7.i1.88
-
Oh, S., Gwak, J., Park, S. and Yang, C. S. 2014. Green tea polyphenol EGCG suppresses Wnt/
${\beta}$ -catenin signaling by promoting GSK-$3{\beta}$ - and PP2A-independent${\beta}$ -catenin phosphorylation/ degradation. Biofactors 40, 586-595. https://doi.org/10.1002/biof.1185 - Piyanuch, R., Sukhthankar, M., Wandee, G. and Baek, S. J. 2007. Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells. Cancer Lett. 258, 230-240. https://doi.org/10.1016/j.canlet.2007.09.007
- Siegel, R. L., Miller, K. D. and Jemal, A. 2016. Cancer statistics, 2016. CA Cancer J. Clin. 66, 7-30. https://doi.org/10.3322/caac.21332
- Soldani, C. and Scovassi, A. I. 2002. Poly (ADP-ribose) polymerase- 1 cleavage during apoptosis: an update. Apoptosis 7, 321-328. https://doi.org/10.1023/A:1016119328968
-
Tong, W., Wang, Q., Sun, D. and Suo, J. 2016. Curcumin suppresses colon cancer cell invasion via AMPK-induced inhibition of NF-
${\kappa}B$ , uPA activator and MMP9. Oncol Lett. 12, 4139-4146. https://doi.org/10.3892/ol.2016.5148 - Wang, D., Xiang, D. B., He, Y. J., Li, Z. P., Wu, X. H., Mou, J. H., Xiao, H. L. and Zhang, Q. H. 2005. Effect of caffeic acid phenethyl ester on proliferation and apoptosis of colorectal cancer cells in vitro. World J. Gastroenterol. 11, 4008- 4012. https://doi.org/10.3748/wjg.v11.i26.4008
- Wilson, L. C., Baek, S. J., Call, A. and Eling, T. E. 2003. Nonsteroidal anti-inflammatory drug-activated gene (NAG- 1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int. J. Cancer 105, 747-753. https://doi.org/10.1002/ijc.11173
- Xiang, D., Wang, D., He, Y., Xie, J., Zhong, Z., Li, Z. and Xie, J. 2006. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the beta-catenin/ T-cell factor signaling. Anticancer Drugs 17, 753-762. https://doi.org/10.1097/01.cad.0000224441.01082.bb