References
- Bashline, L., Lei, L., Li, S. and Gu, Y. 2014. Cell wall, cytoskeleton, and cell expansion in higher plants. Mol. Plant 7, 586-600. https://doi.org/10.1093/mp/ssu018
- Boccalandro, H. E., De Simone, S. N., Bermann-Honsberger, A., Schepens, I., Fankhause, C. and Casal, J. J. 2008. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism. Plant Physiol. 146, 108-115.
- Boccalandro, H. E., Rugnone, M. L., Moreno, J. E., Ploschuk, E. L., Serna, L., Yanovsky, M. J. and Casal, J. J. 2009. Phytochrome B enhances photosynthesis at the expense of water- use efficiency in Arabidopsis. Plant Physiol. 150, 1083- 1092. https://doi.org/10.1104/pp.109.135509
- Chen, M., Chory, J. and Fankhauser, C. 2004. Light signal transduction in higher plants. Annu. Rev. Genet. 38, 87-117. https://doi.org/10.1146/annurev.genet.38.072902.092259
- Clack, T., Mathews, S. and Sharrock, R. A. 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol. Biol. 25, 413-427. https://doi.org/10.1007/BF00043870
- Correll, M. J. and Kiss, J. Z. 2002. Interactions between gravitropism and phototropism in plants. J. Plant Growth Regul. 21, 89-101. https://doi.org/10.1007/s003440010056
- Correll, M. J. and Kiss, J. Z. 2005. The roles of phytochromes in elongation and gravitropism of roots. Plant Cell Physiol. 46, 317-323. https://doi.org/10.1093/pcp/pci038
- Devlin, P. F., Robson, R. H., Patel, S. R., Goosey, L., Sharrock, R. A. and Whitelam, G. C. 1999. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiol. 119, 909-915. https://doi.org/10.1104/pp.119.3.909
- Franklin, K. A. and Quail, P. H. 2009. Phytochrome functions in Arabidopsis development. J. Exp. Bot. 61, 11-24.
- Franklin, K. A., Praekelt, U., Stoddart, W. M., Billingham, O. E., Halliday, K. J. and Whitelam, G. C. 2003. Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol. 131, 1340-1346. https://doi.org/10.1104/pp.102.015487
- Franklin, K. A. and Whitelam, G. C. 2004. Light signals, phytochromes and cross-talk with other environmental cues. J. Exp. Bot. 55, 271-276.
- Harrison, M. and Pickard, B. G. 1986. Evaluation of ethylene as a mediator of gravitropism by tomato hypocotyls. Plant Physiol. 80, 592-595. https://doi.org/10.1104/pp.80.2.592
- Hennig, L., Stoddart, W. M., Dieterle, M., Whitelam, G. C. and Schafer, E. 2002. Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol. 128, 194-200. https://doi.org/10.1104/pp.010559
- Kim, K., Shin, J., Lee, S. H., Kweon, H. S., Maloof, J. N. and Choi, G. 2011. Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplast through phytochrome-interacting factors. Proc. Natl. Acad. Sci. USA 108, 1729-1734. https://doi.org/10.1073/pnas.1011066108
- Kim, J., Song, K., Park, E., Kim, K., Bae, G. and Choi, G. 2016. Epidermal phytochrome B inhibits hypocotyl negative gravitropism non-cell autonomously. Plant Cell 28, 2270- 2785.
- Kim, S. Y., Kim, Y. K., Kwon, K. S. and Kim, K. W. 2000. Action of malformin A1 on gravitropic curvature in primary roots of maize (Zea mays L.). J. Plant Biol. 43, 183-188. https://doi.org/10.1007/BF03030417
- Liscum, E. and Hangarter, R. P. 1993. Genetic evidence that the red-absorbing form of phytochrome B modulates gravitropism in Arabidopsis thaliana. Plant Physiol. 103, 15-19. https://doi.org/10.1104/pp.103.1.15
- Ma, Q., Wang, X., Sun J. and Mao, T. 2017. Coordinated regulation of hypocotyl cell elongation by light and ethylene through a microtubule destabilizing protein. Plant Physiol. 176, 678-690.
- Mekhedov, S. L. and Kende, H. 1996. Submergence enhances expression of a gene encoding 1-aminocyclopropane-1- carboxylate oxidase in deepwater rice. Plant Cell Physiol. 37, 531-537. https://doi.org/10.1093/oxfordjournals.pcp.a028976
- Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- Nagatani, A. 2004. Light-regulated nuclear localization of phytochromes. Curr. Opin. In Plant Biol. 7, 708-711. https://doi.org/10.1016/j.pbi.2004.09.010
- Park, J. H., Lee, S. S., Woo, S. H. and Kim, S. Y. 2012. Effect of light on root growth and gravitropism response of phytochrome mutants of Arabidopsis. J. Life Sci. 22, 681-686. https://doi.org/10.5352/JLS.2012.22.5.681
- Ruzicka, K., Ljung, K., Vanneste, S., Podhorska, R., Beeckman, T., Friml, J. and Benkova, E. 2007. Ethylene regulates root growth through effects on auxin biosynthesis and transport- dependent auxin distribution. Plant Cell 19, 2197-2212. https://doi.org/10.1105/tpc.107.052126
- Sharrock, R. A. and Quail, P. H. 1989. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Gene Dev. 3, 1745-1757. https://doi.org/10.1101/gad.3.11.1745
- Takano, M., Kanegae, H., Shinomura, T., Miyao, A., Hirochika, H. and Furuya, M. 2001. Isolation and characterization of rice phytochrome A mutants. Plant Cell. 13, 521-534. https://doi.org/10.1105/tpc.13.3.521
- Tao, Y., Ferrer, J. L., Ljung, K., Pojer, F., Hong, F., Long, J. A. and Li, L. 2008. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133, 164-176. https://doi.org/10.1016/j.cell.2008.01.049
- Van de Poel, B., Smet, D. and Van Der Straete, D. 2015. Ethylene and hormonal cross talk in vegetative growth and development. Plant Physiol. 169, 61-72. https://doi.org/10.1104/pp.15.00724
- Wheeler, R. M., White, R. G. and Salisbury, F. B. 1986. Gravitropism in higher plant shoot. IV. Further studies on participation of ethylene. Plant Physiol. 82, 534-542. https://doi.org/10.1104/pp.82.2.534
- Woeste, K. E., Ye, C. and Kieber, J. J. 1999. Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol. 119, 521-529. https://doi.org/10.1104/pp.119.2.521
- Woltering, E. J., Balk, P. A., Nijenhuis-deVries, M. A., Faivre, M., Ruys, G., Somhorst, D. Philosoph-Hadas, S. and Friedman, H. 2005. An auxin-responsive 1-aminocyclopropane- 1-carboxylate synthase is responsible for differential ethylene production in gravistimulated Antirrhinum majus L. flower stems. Planta 220, 403-413. https://doi.org/10.1007/s00425-004-1359-6
- Woo, S. H., Oh, S. E., Kim, J. S., Mullen, J. L., Hangarter, R. P. and Kim, S. Y. 2008. Root gravitropic response of phytochrome mutant (phyAB) in Arabidopsis. J. Life Sci. 18, 148-153. https://doi.org/10.5352/JLS.2008.18.2.148
- Yu, Y. and Huang, R. 2017. Integration of ethylene and light signaling affects hypocotyl growth in Arabidopsis. Front Plant Sci. 8, 57. doi: 10.3389/fpls.2017.00057.