DOI QR코드

DOI QR Code

Effects of Wing Twist on Longitudinal Stability of BWB UCAV

날개의 비틀림이 동체-날개 융합익형 무인전투기의 종안정성에 미치는 영향에 대한 연구

  • Received : 2017.09.28
  • Accepted : 2017.11.22
  • Published : 2018.01.01

Abstract

Lambda wing type Unmanned Combat Aerial Vehicle(UCAV) which adopts Blended Wing Body(BWB) has relatively less drag and more stealth performance than conventional aircraft. However, Pitching moment is rapidly increased at a specific angle of attack affected by leading edge vortex due to leading edge sweep angle. Wind tunnel testing and numerical analysis were carried out with UCAV 1303 configuration on condition of 50 m/s of flow velocity, $-4^{\circ}{\sim}28^{\circ}$ of the range of angle-of-attack. The effect of wing twist for longitudinal stability at the various angles of attack was verified in this study. When negative twist is applied on the wing, Pitch-break was onset at higher angle of attack due to delayed flow separation on outboard of the wing. On the other hand, pitch-break was onset at lower angle of attack and lift-to-drag ratio was increased when positive twist is applied on the wing.

람다 날개 형태의 무인전투기는 동체-날개 융합익의 형태를 띄고 있어 일반적인 항공기에 비해 상대적으로 항력이 작고 레이더 반사 면적이 작아 우수한 스텔스 성능을 갖는다. 그러나 앞전 후퇴각에 의해 생성되는 앞전 와류의 영향으로 특정 받음각에서 피칭모멘트가 급격히 증가하는 현상이 나타난다. 본 연구에서는 무미익 람다 날개 형상을 기반으로 한 UCAV 1303 모델을 사용하여 풍동시험과 전산해석을 수행하였다. 실험 풍속은 50 m/s, 받음각 범위는 $-4^{\circ}{\sim}28^{\circ}$ 으로 하였으며 전산해석 또한 실험 조건과 동일하게 연구를 수행하였다. 본 연구를 통해 UCAV의 날개 비틀림이 피칭모멘트의 안정성에 미치는 영향을 확인하였다. 그 결과 날개에 음의 비틀림 각을 적용하였을 때 날개 바깥쪽에서의 유동 박리가 지연되면서 Pitch-break가 발생하는 받음각이 증가하였고, 양의 비틀림 각을 적용하였을 때 Pitch-break가 발생하는 받음각이 감소하였지만 양항비가 증가하는 것을 확인하였다.

Keywords

References

  1. Kim, S. B., Seo, B. S. and Park, S. H., "Future of Operation Concept of the Unmanned Combat Aerial Vehicle Looking Through X-47B," KIDA Korea Defense Issue & Analysis, Vol. 14, No.50, 2014
  2. McParlin, S. C., Bruce, R. J., Hepworth, A. G. and Rae, A. J., "Low Speed Wind Tunnel Tests on the 1303 UCAV Concept," 24th AIAA Applied Aerodynamics Conference, 2006, AIAA 2006-2985
  3. Petterson, K., "Low-Speed Aerodynamic and Flowfield Characteristics of a UCAV," 24th AIAA Applied Aerodynamics Conference, 2006, AIAA 2006-2986
  4. Roskam, J., "Airplane Flight Dynamics and Automatic Flight Controls, " DARcorporation, Kansas, 1998, pp. 212
  5. Yaniktepe, B., "Origin and Control of Vortex Breakdown of Unmanned Combat Air Vehicles," Ph.D. Thesis, University of Cukurova, 2006
  6. Medford, C. M., "The Aerodynamics of a Maneuvering UCAV 1303 Aircraft Model and its Control through Leading Edge Curvature Change," Master's Thesis, Naval Postgraduate School, 2012
  7. Shim, H. J., Park, S. O, and Oh, S. Y., "An Experimental Study on Aerodynamic Coefficients of a Tailless BWB UCAV," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2013, pp. 110-113
  8. Shim, H. J., Park, S. O. and Oh, S. Y., "An Experiment Study on Sideslip Angle Effect of Lambda Wing Configuration," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 43, No. 3, 2015, pp.224-231 https://doi.org/10.5139/JKSAS.2015.43.3.224
  9. Shim, H. J. and Park, S. O,, "Passive Control of Pitch-break of a BWB UCAV Model Using Vortex Generator," Journal of Mechanical Science and Technology, Vol. 29, No. 3, 2015, pp.1103-1109 https://doi.org/10.1007/s12206-015-0222-y
  10. Park, S. H., Chang, K. S., Shim, H. J., Sheen, D. J. and Park, S. H., "Computational Fluid Dynamics of the Low-Speed Longitudinal Aerodynamic Characteristics for BWB type UCAV Configuration," Journal of Computational Fluids Engineering, Vol. 21, No. 3, 2016, pp. 48-54 https://doi.org/10.6112/kscfe.2016.21.3.048
  11. ESDU, "Effect of Planform Geometry on Low Speed Pitch-break Characteristics of Swept Wings," ESDU International, No.01005, 2001
  12. Crippa, S. and Rizzi, A., "Numerical Investigation of Reynolds Number Effects on a Blunt Leading -Edge Delta Wing," 24th AIAA Applied Aerodynamics Conference, 2006, AIAA 2006-3001
  13. Chu, J. and Lucking, J., "Experimental Surface Pressure Data Obtained on $65^{\circ}$ Delta Wing Across Reynolds Number and Mach Number Ranges," NASA TM 4545.0., 1996
  14. Ko, K. C., Jung, H. S., Kim, D. H. and Cho, J. S., "Study on the Aerodynamic Characteristics of Hanyang Low Speed Wind Tunnel," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 31, No. 4, 2003, pp. 92-98 https://doi.org/10.5139/JKSAS.2003.31.4.092
  15. Sohn, M. H., Lee, J., Chang, J. W., Kang, C. and Kim, W., "Experiments for Aeronautical Engineering, " 3ed, Republic of Korea Air Force Academy, 1994
  16. Barlow, J. B., Rae, W. H. and Pope, A., "Low-Speed Wind Tunnel Testing, " 3ed, Wiley & Sons, NY, 1999
  17. Jo, Y. H., Chang, K. S., Sheen, D. J. and Park, S. H., "CFD Analysis of Aerodynamic Characteristics of BWB UCAV Configuration with Transition Effect," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 7, 2014, pp. 535-543 https://doi.org/10.5139/JKSAS.2014.42.7.535
  18. Menter, F. R., "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA Journal, Vol. 32, No. 8, 1994
  19. Olsson, A., "Conceptual Design of Experimental Aircraft, " 2006
  20. Vallespin, D., Da Ronch, A. and Badcock, K. J., "Validation of Vortical Flow Prediction for a UCAV Wind Tunnel Model," 28th AIAA Applied Aerodynamics Conference, 2010, AIAA 2010-4560