References
- M. Moosazadeh, S. Kharkovsky, and J. Toby Case, "Microwave and millimetre wave antipodal Vivaldi antenna with trapezoid-shaped dielectric lens for imaging of construction materials," IET Microwaves, Antennas & Propagation, vol. 10, no. 3, pp. 301-309, 2016. https://doi.org/10.1049/iet-map.2015.0374
- M. Moosazadeh, S. Kharkovsky, J. Toby Case, and B. Samali, "Miniaturized UWB antipodal Vivaldi antenna and its application for detection of void inside concrete Specimens," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1317-1320, 2016.
- Z. Akhter, B. N. Abhijith, and M. J. Akhtar, "Hemisphere lens-loaded Vivaldi antenna for time domain microwave imaging of concealed objects," Journal of Electromagnetic Waves and Application, vol. 30, no. 9, pp. 1183-1197, 2016. https://doi.org/10.1080/09205071.2016.1186574
- J. Lei, G. Fu, L. Yang, and D. Fu, "A modified balanced antipodal Vivaldi antenna with improved radiation characteristics," Microwave and Optical Technology Letters, vol. 55, no. 6, pp. 1321-1325, 2013. https://doi.org/10.1002/mop.27558
- J. Bourqui, M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for nearfield microwave imaging," IEEE Transactions on Antennas and Propagation, vol. 58, no. 7, pp. 2318-2326, 2010. https://doi.org/10.1109/TAP.2010.2048844
- A. R. H. Alhawari, A. Ismail, M. A. Mahdi, and R. S. A. Raja Abdullah, "Antipodal Vivaldi antenna performance booster exploiting snug-in negative index metamaterial," Progress in Electromagnetics Research, vol. 27, pp. 265-279, 2012. https://doi.org/10.2528/PIERC12012906
- P. Duangtang, P. Mesawad, and R. Wongsan, "Creating a gain enhancement technique for a conical horn antenna by adding a wiremedium structure at the aperture," Journal of Electromagnetic Engineering and Science, vol. 16, no. 2, pp. 134-142, 2016. https://doi.org/10.5515/JKIEES.2016.16.2.134
- I. T. Nassar and T. M. Weller, "A novel method for improving antipodal Vivaldi antenna performance," IEEE Transactions on Antennas and Propagation, vol. 63, no. 7, pp. 3321-3324, 2015. https://doi.org/10.1109/TAP.2015.2429749
- J. D. S. Langley, P. S. Hall, and P. Newham, "Balanced antipodal Vivaldi antenna for wide bandwidth phased arrays," IEE Proceedings-Microwaves, Antennas and Propagation, vol. 143, no. 2, pp. 97-102, 1996. https://doi.org/10.1049/ip-map:19960260
- E. Gazit, "Improved design of the Vivaldi antenna," IEE Proceedings H (Microwaves, Antennas and Propagation), vol. 135, no. 2, pp. 89-92, 1988. https://doi.org/10.1049/ip-h-2.1988.0020
- X. Qing, Z. N. Chen, and M. Y. W. Chia, "Dual elliptically tapered antipodal slot antenna loaded by curved terminations for ultrawideband applications," Radio Science, vol. 41, no. 6, pp. 1-14, 2006.
- M. A. Matin, Ultra Wideband Communications: Novel Trends-Antennas and Propagation. Rijeka, Croatia: InTech, 2011.
Cited by
- Design of Cavity-Backed Bow-Tie Antenna with Matching Layer for Human Body Application vol.19, pp.18, 2018, https://doi.org/10.3390/s19184015
- Design of a 16‐element array antenna with a planar L‐shaped probe for a direction of arrival estimation of the unidentified broadband signal vol.61, pp.10, 2018, https://doi.org/10.1002/mop.31900
- A Low-Profile High-Gain and Wideband Log-Periodic Meandered Dipole Array Antenna with a Cascaded Multi-Section Artificial Magnetic Conductor Structure vol.19, pp.20, 2018, https://doi.org/10.3390/s19204404
- The enhanced gain and cost‐effective antipodal Vivaldi antenna for 5G communication applications vol.62, pp.6, 2018, https://doi.org/10.1002/mop.32335
- Optimization of a 36-Element Broadband Direction-Finding Antenna Array Using Printed Vivaldi Array Elements with Extended Flares vol.31, pp.8, 2020, https://doi.org/10.5515/kjkiees.2020.31.8.001
- Wideband Antipodal Vivaldi Antenna Using Metamaterial for Micrometer and Millimeter Wave Applications vol.42, pp.9, 2021, https://doi.org/10.1007/s10762-021-00799-2